- Labels Detection
- Faces Detection
- Faces Comparison
- Faces Indexing
- Faces Search
-
-
Save SeptiyanAndika/b46401e5ebb15df3eac793b3669921ed to your computer and use it in GitHub Desktop.
Amazon Rekognition - Python Code Samples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
BUCKET = "amazon-rekognition" | |
KEY = "test.jpg" | |
def detect_labels(bucket, key, max_labels=10, min_confidence=90, region="eu-west-1"): | |
rekognition = boto3.client("rekognition", region) | |
response = rekognition.detect_labels( | |
Image={ | |
"S3Object": { | |
"Bucket": bucket, | |
"Name": key, | |
} | |
}, | |
MaxLabels=max_labels, | |
MinConfidence=min_confidence, | |
) | |
return response['Labels'] | |
for label in detect_labels(BUCKET, KEY): | |
print "{Name} - {Confidence}%".format(**label) | |
""" | |
Expected output: | |
People - 99.2436447144% | |
Person - 99.2436447144% | |
Human - 99.2351226807% | |
Clothing - 96.7797698975% | |
Suit - 96.7797698975% | |
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
BUCKET = "amazon-rekognition" | |
KEY = "test.jpg" | |
FEATURES_BLACKLIST = ("Landmarks", "Emotions", "Pose", "Quality", "BoundingBox", "Confidence") | |
def detect_faces(bucket, key, attributes=['ALL'], region="eu-west-1"): | |
rekognition = boto3.client("rekognition", region) | |
response = rekognition.detect_faces( | |
Image={ | |
"S3Object": { | |
"Bucket": bucket, | |
"Name": key, | |
} | |
}, | |
Attributes=attributes, | |
) | |
return response['FaceDetails'] | |
for face in detect_faces(BUCKET, KEY): | |
print "Face ({Confidence}%)".format(**face) | |
# emotions | |
for emotion in face['Emotions']: | |
print " {Type} : {Confidence}%".format(**emotion) | |
# quality | |
for quality, value in face['Quality'].iteritems(): | |
print " {quality} : {value}".format(quality=quality, value=value) | |
# facial features | |
for feature, data in face.iteritems(): | |
if feature not in FEATURES_BLACKLIST: | |
print " {feature}({data[Value]}) : {data[Confidence]}%".format(feature=feature, data=data) | |
""" | |
Expected output: | |
Face (99.945602417%) | |
SAD : 14.6038293839% | |
HAPPY : 12.3668470383% | |
DISGUSTED : 3.81404161453% | |
Sharpness : 10.0 | |
Brightness : 31.4071826935 | |
Eyeglasses(False) : 99.990234375% | |
Sunglasses(False) : 99.9500656128% | |
Gender(Male) : 99.9291687012% | |
EyesOpen(True) : 99.9609146118% | |
Smile(False) : 99.8329467773% | |
MouthOpen(False) : 98.3746566772% | |
Mustache(False) : 98.7549591064% | |
Beard(False) : 92.758682251% | |
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
BUCKET = "amazon-rekognition" | |
KEY_SOURCE = "test.jpg" | |
KEY_TARGET = "target.jpg" | |
def compare_faces(bucket, key, bucket_target, key_target, threshold=80, region="eu-west-1"): | |
rekognition = boto3.client("rekognition", region) | |
response = rekognition.compare_faces( | |
SourceImage={ | |
"S3Object": { | |
"Bucket": bucket, | |
"Name": key, | |
} | |
}, | |
TargetImage={ | |
"S3Object": { | |
"Bucket": bucket_target, | |
"Name": key_target, | |
} | |
}, | |
SimilarityThreshold=threshold, | |
) | |
return response['SourceImageFace'], response['FaceMatches'] | |
source_face, matches = compare_faces(BUCKET, KEY_SOURCE, BUCKET, KEY_TARGET) | |
# the main source face | |
print "Source Face ({Confidence}%)".format(**source_face) | |
# one match for each target face | |
for match in matches: | |
print "Target Face ({Confidence}%)".format(**match['Face']) | |
print " Similarity : {}%".format(match['Similarity']) | |
""" | |
Expected output: | |
Source Face (99.945602417%) | |
Target Face (99.9963378906%) | |
Similarity : 89.0% | |
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
BUCKET = "amazon-rekognition" | |
KEY = "test.jpg" | |
IMAGE_ID = KEY # S3 key as ImageId | |
COLLECTION = "my-collection-id" | |
# Note: you have to create the collection first! | |
# rekognition.create_collection(CollectionId=COLLECTION) | |
def index_faces(bucket, key, collection_id, image_id=None, attributes=(), region="eu-west-1"): | |
rekognition = boto3.client("rekognition", region) | |
response = rekognition.index_faces( | |
Image={ | |
"S3Object": { | |
"Bucket": bucket, | |
"Name": key, | |
} | |
}, | |
CollectionId=collection_id, | |
ExternalImageId=image_id, | |
DetectionAttributes=attributes, | |
) | |
return response['FaceRecords'] | |
for record in index_faces(BUCKET, KEY, COLLECTION, IMAGE_ID): | |
face = record['Face'] | |
# details = record['FaceDetail'] | |
print "Face ({}%)".format(face['Confidence']) | |
print " FaceId: {}".format(face['FaceId']) | |
print " ImageId: {}".format(face['ImageId']) | |
""" | |
Expected output: | |
Face (99.945602417%) | |
FaceId: dc090f86-48a4-5f09-905f-44e97fb1d455 | |
ImageId: f974c8d3-7519-5796-a08d-b96e0f2fc242 | |
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
BUCKET = "amazon-rekognition" | |
KEY = "search.jpg" | |
COLLECTION = "my-collection-id" | |
def search_faces_by_image(bucket, key, collection_id, threshold=80, region="eu-west-1"): | |
rekognition = boto3.client("rekognition", region) | |
response = rekognition.search_faces_by_image( | |
Image={ | |
"S3Object": { | |
"Bucket": bucket, | |
"Name": key, | |
} | |
}, | |
CollectionId=collection_id, | |
FaceMatchThreshold=threshold, | |
) | |
return response['FaceMatches'] | |
for record in search_faces_by_image(BUCKET, KEY, COLLECTION): | |
face = record['Face'] | |
print "Matched Face ({}%)".format(record['Similarity']) | |
print " FaceId : {}".format(face['FaceId']) | |
print " ImageId : {}".format(face['ExternalImageId']) | |
""" | |
Expected output: | |
Matched Face (96.6647949219%) | |
FaceId : dc090f86-48a4-5f09-905f-44e97fb1d455 | |
ImageId : test.jpg | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment