Created
June 2, 2023 22:08
-
-
Save Sgeo/213a45eb90bb4507317cb4315279ce6a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
r(t)^2 = x(t)^2 + y(t)^2 + z(t)^2 | |
x(t+h) = x(t) + h * f(t) * -x(t) / r(t)^2 | |
y(t+h) = y(t) + h * f(t) * -y(t) / r(t)^2 | |
z(t+h) = z(t) + h * f(t) * -z(t) / r(t)^2 | |
x(t+h) - x(t) = h * f(t) * -x(t)/r(t)^2 | |
x'(t) = -f(t)x(t)/r(t)^2 | |
r(t+h)^2 = [x(t)+h*f(t)*-x(t)/r(t)^2]^2 + [y(t)+h*f(t)*-y(t)/r(t)^2]^2 + [z(t)+h*f(t)*-z(t)/r(t)^2]^2 | |
https://www.wolframalpha.com/input?i=%5Bx%28t%29%2Bh*f%28t%29*-x%28t%29%2Fr%28t%29%5E2%5D%5E2 | |
r(t+h)^2 = (h^2*f(t)^2*x(t)^2)/r(t)^4 - (2*h*f(t)*x(t)^2)/r(t)^2 + x(t)^2 + ... | |
r(t+h)^2 - r(t)^2 = (h^2*f(t)^2*x(t)^2)/r(t)^4 - (2*h*f(t)*x(t)^2)/r(t)^2 + ... (no x(t)^2+y(t)^2+z(t)^2) | |
(r(t+h)^2 - r(t)^2)/h = h*2*f(t)^2*x(t)^2/r(t)^r - 2*f(t)*x(t)^2/r(t)^2 + ... | |
lim h->0 | |
(d/dt)(r(t)^2) = -2*f(t)*x(t)^2/r(t)^2 - 2*f(t)*y(t)^2/r(t)^2 - 2*f(t)*z(t)^2/r(t)^2 | |
r'(t) = -f(t)x(t)^2/r(t)^3 - f(t)y(t)^2/r(t)^3 - f(t)z(t)^2/r(t)^3 | |
r'(t) = [-f(t)/r(t)^3][x(t)^2 + y(t)^2 + z(t)^2] = [-f(t)/r(t)^3][r(t)^2] = -f(t)/r(t) | |
r'(t) = -f(t)/r(t) |
ox(t) = x(t) + x'(t)r(t)^2/f(t) where r(t) != 0
r(t)^2 = (ox(t)-x(t))^2 + (oy(t) - y(t))^2 + (oz(t) - z(t))^2
r(t)^2 = ox(t)^2 - 2ox(t)x(t) + x(t)^2 + (oy(t) - y(t))^2 + (oz(t) - z(t))^2
ox(t) = x(t) + x'(t)ox(t)^2/f(t) - x'(t)2ox(t)x(t)/f(t) + x'(t)x(t)^2/f(t) + x'(t)(oy(t) - y(t))^2/f(t) + (oz(t) - z(t))^2/f(t)
0 = x(t) + x'(t)ox(t)^2/f(t) - x'(t)2ox(t)x(t)/f(t) + x'(t)x(t)^2/f(t) + x'(t)(oy(t) - y(t))^2/f(t) + (oz(t) - z(t))^2/f(t) - ox(t)
0 = (x'(t)/f(t))ox(t)^2
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Just realized that r(t) still references ox(t), so not a full calculation yet