Skip to content

Instantly share code, notes, and snippets.

@ShawonAshraf
Created November 20, 2020 21:20
Show Gist options
  • Save ShawonAshraf/99d87e50851434bd46479f2d85fd2c5c to your computer and use it in GitHub Desktop.
Save ShawonAshraf/99d87e50851434bd46479f2d85fd2c5c to your computer and use it in GitHub Desktop.
TF Apple Fork test on mnist data
import tensorflow as tf
from tensorflow.python.compiler.mlcompute import mlcompute
mlcompute.set_mlc_device(device_name='gpu')
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',loss=loss_fn, metrics=['accuracy'])
model.fit(x_train, y_train, epochs=100)
ev = model.evaluate(x_test, y_test, verbose=5)
print(ev)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment