Created
November 20, 2020 21:20
-
-
Save ShawonAshraf/99d87e50851434bd46479f2d85fd2c5c to your computer and use it in GitHub Desktop.
TF Apple Fork test on mnist data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.python.compiler.mlcompute import mlcompute | |
mlcompute.set_mlc_device(device_name='gpu') | |
mnist = tf.keras.datasets.mnist | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train, x_test = x_train / 255.0, x_test / 255.0 | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dropout(0.2), | |
tf.keras.layers.Dense(10) | |
]) | |
predictions = model(x_train[:1]).numpy() | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) | |
loss_fn(y_train[:1], predictions).numpy() | |
model.compile(optimizer='adam',loss=loss_fn, metrics=['accuracy']) | |
model.fit(x_train, y_train, epochs=100) | |
ev = model.evaluate(x_test, y_test, verbose=5) | |
print(ev) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment