Last active
March 7, 2018 12:49
-
-
Save ShigekiKarita/3b172fd8c11d21fcd01b2a260c7e42ec to your computer and use it in GitHub Desktop.
test_lm.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import chainer | |
| import torch | |
| import lm_train | |
| import lm_train_th | |
| def transfer_lstm(ch_lstm, th_lstm): | |
| th_lstm.weight_ih.data = torch.from_numpy(ch_lstm.upward.W.data) | |
| th_lstm.bias_ih.data = torch.from_numpy(ch_lstm.upward.b.data) | |
| th_lstm.weight_hh.data = torch.from_numpy(ch_lstm.lateral.W.data) | |
| th_lstm.bias_hh.data.zero_() | |
| def transfer_lm(ch_rnnlm, th_rnnlm): | |
| assert isinstance(ch_rnnlm, lm_train.RNNLM) | |
| assert isinstance(th_rnnlm, lm_train_th.RNNLM) | |
| th_rnnlm.embed.weight.data = torch.from_numpy(ch_rnnlm.embed.W.data) | |
| transfer_lstm(ch_rnnlm.l1, th_rnnlm.l1) | |
| transfer_lstm(ch_rnnlm.l2, th_rnnlm.l2) | |
| th_rnnlm.lo.weight.data = torch.from_numpy(ch_rnnlm.lo.W.data) | |
| th_rnnlm.lo.bias.data = torch.from_numpy(ch_rnnlm.lo.b.data) | |
| def test_lm(): | |
| n_vocab = 52 | |
| rnnlm_ch = lm_train.ClassifierWithState(lm_train.RNNLM(n_vocab, 650)) | |
| rnnlm_th = lm_train_th.ClassifierWithState(lm_train_th.RNNLM(n_vocab, 650)) | |
| rnnlm_th.eval() | |
| transfer_lm(rnnlm_ch.predictor, rnnlm_th.predictor) | |
| import numpy | |
| # test transfer function | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.embed.W.data, rnnlm_th.predictor.embed.weight.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l1.upward.b.data, rnnlm_th.predictor.l1.bias_ih.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l1.upward.W.data, rnnlm_th.predictor.l1.weight_ih.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l1.lateral.W.data, rnnlm_th.predictor.l1.weight_hh.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l2.upward.b.data, rnnlm_th.predictor.l2.bias_ih.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l2.upward.W.data, rnnlm_th.predictor.l2.weight_ih.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.l2.lateral.W.data, rnnlm_th.predictor.l2.weight_hh.data.numpy()) | |
| numpy.testing.assert_allclose(rnnlm_ch.predictor.lo.b.data, rnnlm_th.predictor.lo.bias.data.numpy()) | |
| # test prediction equality | |
| with chainer.no_backprop_mode(), chainer.using_config('train', False): | |
| state = {'c1': None, 'h1': None, 'c2': None, 'h2': None} | |
| state_th, y_th = rnnlm_th.predictor(state, x) | |
| state = {'c1': None, 'h1': None, 'c2': None, 'h2': None} | |
| state_ch, y_ch = rnnlm_ch.predictor(state, x.data.numpy()) | |
| for k, v in state_ch.items(): | |
| numpy.testing.assert_allclose(state_th[k][0, :10].data.numpy(), state_ch[k][0, :10].data) | |
| numpy.testing.assert_allclose(y_th.data.numpy(), y_ch.data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment