Last active
September 2, 2016 14:11
-
-
Save ShigekiKarita/3cc3c44b36a12020a3a4e2cf24e5586f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import chainer | |
import chainer.functions as F | |
import chainer.links as L | |
class DenseNet(chainer.Chain): | |
""" | |
https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua | |
""" | |
def __init__(self, output_num, in_shape, depth): | |
super(DenseNet, self).__init__() | |
assert (depth - 4) % 3 == 0 | |
self.block_depth = (depth - 4) // 3 | |
self.growth_rate = 12 | |
self.channel_size = 24 | |
self.ksize = (3, 3) | |
self.in_shape = in_shape | |
self.depth = depth | |
self._depth_state = 0 | |
self.transitions = [] | |
self.add_link("cv0", L.Convolution2D(self.in_shape[0], self.channel_size, ksize=self.ksize, stride=1, pad=1)) | |
self.add_block() | |
self.add_transition() | |
self.add_block() | |
self.add_transition() | |
self.add_block() | |
self.add_link("bn_last", L.BatchNormalization(self.channel_size)) | |
self.add_link("fc_last", L.Linear(self.channel_size, output_num)) | |
def is_transition(self, d): | |
return d in self.transitions | |
def _add_common(self, n_output, k, p): | |
n_input = self.channel_size | |
self._depth_state += 1 | |
bn = L.BatchNormalization(n_input) | |
self.add_link("bn%d" % self._depth_state, bn) | |
# ResNet initialization | |
kw, kh = k | |
n = n_output * kw * kh | |
W = np.random.randn(n_output, n_input, kw, kh) * ((2.0 / n) ** 0.5) | |
b = np.zeros((n_output,)) | |
cv = L.Convolution2D(n_input, n_output, ksize=k, stride=1, pad=p, initialW=W, initial_bias=b) | |
self.add_link("cv%d" % self._depth_state, cv) | |
def add_block(self): | |
for i in range(0, self.block_depth): | |
self._add_common(self.growth_rate, self.ksize, 1) | |
self.channel_size += self.growth_rate | |
def add_transition(self): | |
self._add_common(self.channel_size, (1, 1), 0) | |
self.transitions.append(self._depth_state) | |
def __call__(self, data, train=True, drop_rate=0.5): | |
def common(x, d): | |
x = self["bn%d" % d](x, test=not train) | |
x = F.relu(x) | |
x = self["cv%d" % d](x) | |
if drop_rate: | |
x = F.dropout(x, ratio=drop_rate, train=train) | |
return x | |
# input layer | |
x = self.cv0(data) | |
for d in range(1, self.depth - 1): | |
if self.is_transition(d): | |
# transition layer | |
x = common(x, d) | |
x = F.average_pooling_2d(x, ksize=(2, 2)) | |
else: | |
# densely connected block | |
x_prev = x | |
x = common(x, d) | |
x = F.concat((x, x_prev)) | |
# output layer | |
x = self.bn_last(x, test=not train) | |
x = F.relu(x) | |
x = F.average_pooling_2d(x, ksize=(8, 8)) | |
x = self.fc_last(x) | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment