Created
February 25, 2016 00:52
-
-
Save ShigekiKarita/560fa6c2412a6399d261 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import numpy as np | |
import chainer | |
import chainer.links as L | |
import chainer.optimizers as O | |
import data | |
import net | |
def compute(optimizer, inp, out, volatile, batchsize): | |
total = inp.shape[0] | |
sum_accuracy = 0 | |
sum_loss = 0 | |
model = optimizer.target | |
perm = np.random.permutation(inp.shape[0]) | |
for i in range(0, total, batchsize): | |
x = chainer.Variable(np.asarray(inp[perm[i:i + batchsize]]), volatile) | |
t = chainer.Variable(np.asarray(out[perm[i:i + batchsize]]), volatile) | |
loss = model(x, t) | |
sum_loss += float(model.loss.data) * len(t.data) / total | |
sum_accuracy += float(model.accuracy.data) * len(t.data) / total | |
if volatile == "off": | |
model.zerograds() | |
loss.backward() | |
optimizer.update() | |
return 'mean loss={}, accuracy={}'.format(sum_loss, sum_accuracy) | |
if __name__ == "__main__": | |
# prepare NN | |
optimizer = O.Adam() | |
optimizer.setup(L.Classifier(net.MnistMLP(784, 1000, 10))) | |
batchsize = 100 | |
# prepare dataset | |
mnist = data.load_mnist_data() | |
mnist['data'] = mnist['data'].astype(np.float32) / 255 | |
mnist['target'] = mnist['target'].astype(np.int32) | |
train_size = 60000 | |
x_train, x_test = np.split(mnist['data'], [train_size]) | |
y_train, y_test = np.split(mnist['target'], [train_size]) | |
for epoch in range(20): | |
print('epoch', epoch) | |
print("train\t", compute(optimizer, x_train, y_train, "off", batchsize)) | |
print("test\t", compute(optimizer, x_test, y_test, "on", batchsize)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment