Skip to content

Instantly share code, notes, and snippets.

@ShigekiKarita
Created December 19, 2016 14:43
Show Gist options
  • Save ShigekiKarita/bb8d88f4da34fb55f850a133e3aec416 to your computer and use it in GitHub Desktop.
Save ShigekiKarita/bb8d88f4da34fb55f850a133e3aec416 to your computer and use it in GitHub Desktop.
mxnet config
#-------------------------------------------------------------------------------
# Template configuration for compiling mxnet
#
# If you want to change the configuration, please use the following
# steps. Assume you are on the root directory of mxnet. First copy the this
# file so that any local changes will be ignored by git
#
# $ cp make/config.mk .
#
# Next modify the according entries, and then compile by
#
# $ make
#
# or build in parallel with 8 threads
#
# $ make -j8
#-------------------------------------------------------------------------------
#---------------------
# choice of compiler
#--------------------
export CC = gcc
export CXX = g++
export NVCC = nvcc
# whether compile with debug
DEBUG = 0
# the additional link flags you want to add
ADD_LDFLAGS =
# the additional compile flags you want to add
ADD_CFLAGS =
#---------------------------------------------
# matrix computation libraries for CPU/GPU
#---------------------------------------------
# whether use CUDA during compile
USE_CUDA = 1
# add the path to CUDA library to link and compile flag
# if you have already add them to environment variable, leave it as NONE
USE_CUDA_PATH = /usr/local/cuda
# USE_CUDA_PATH = NONE
# whether use CuDNN R3 library
USE_CUDNN = 1
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# whether use cuda runtime compiling for writing kernels in native language (i.e. Python)
USE_NVRTC = 1
# whether use opencv during compilation
# you can disable it, however, you will not able to use
# imbin iterator
USE_OPENCV = 0
# use openmp for parallelization
USE_OPENMP = 1
# MKL ML Library for Intel CPU/Xeon Phi
# Please refer to MKL_README.md for details
# MKL ML Library folder, need to be root for /usr/local
# Change to User Home directory for standard user
# For USE_BLAS!=mkl only
# NOTE: you might need to source /opt/intel/bin/compilervars.sh -arch intel64 -platform linux
MKLML_ROOT=/opt/intel #/usr/local
# whether use MKL2017 library
# NOTE: don't know why it won't work
USE_MKL2017 = 0
# whether use MKL2017 experimental feature for high performance
# Prerequisite USE_MKL2017=1
USE_MKL2017_EXPERIMENTAL = 0
# whether use NNPACK library
USE_NNPACK = 0
USE_NNPACK_NUM_THREADS = 4
# choose the version of blas you want to use
# can be: mkl, blas, atlas, openblas
# in default use atlas for linux while apple for osx
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S), Darwin)
USE_BLAS = apple
else
USE_BLAS = mkl
endif
# add path to intel library, you may need it for MKL, if you did not add the path
# to environment variable
USE_INTEL_PATH = NONE
# If use MKL, choose static link automatically to allow python wrapper
ifeq ($(USE_BLAS), mkl)
USE_STATIC_MKL = 1
else
USE_STATIC_MKL = NONE
endif
#----------------------------
# Settings for power and arm arch
#----------------------------
ARCH := $(shell uname -a)
ifneq (,$(filter $(ARCH), armv6l armv7l powerpc64le ppc64le aarch64))
USE_SSE=0
else
USE_SSE=1
endif
#----------------------------
# distributed computing
#----------------------------
# whether or not to enable multi-machine supporting
USE_DIST_KVSTORE = 0
# whether or not allow to read and write HDFS directly. If yes, then hadoop is
# required
USE_HDFS = 0
# path to libjvm.so. required if USE_HDFS=1
LIBJVM=$(JAVA_HOME)/jre/lib/amd64/server
# whether or not allow to read and write AWS S3 directly. If yes, then
# libcurl4-openssl-dev is required, it can be installed on Ubuntu by
# sudo apt-get install -y libcurl4-openssl-dev
USE_S3 = 0
#----------------------------
# additional operators
#----------------------------
# path to folders containing projects specific operators that you don't want to put in src/operators
EXTRA_OPERATORS =
#----------------------------
# plugins
#----------------------------
# whether to use caffe integration. This requires installing caffe.
# You also need to add CAFFE_PATH/build/lib to your LD_LIBRARY_PATH
# CAFFE_PATH = $(HOME)/caffe
# MXNET_PLUGINS += plugin/caffe/caffe.mk
# whether to use torch integration. This requires installing torch.
# You also need to add TORCH_PATH/install/lib to your LD_LIBRARY_PATH
# TORCH_PATH = $(HOME)/torch
# MXNET_PLUGINS += plugin/torch/torch.mk
# NOTE: you should download https://github.com/baidu-research/warp-ctc/archive/v1.0.tar.gz
WARPCTC_PATH = $(HOME)/tool/warp-ctc-1.0
MXNET_PLUGINS += plugin/warpctc/warpctc.mk
# whether to use sframe integration. This requires build sframe
# [email protected]:dato-code/SFrame.git
# SFRAME_PATH = $(HOME)/SFrame
# MXNET_PLUGINS += plugin/sframe/plugin.mk
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment