Last active
December 7, 2017 17:00
-
-
Save Shikugawa/8dedb06ecb313d960340ec6466316f07 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import Convolution2D, MaxPooling2D | |
from keras.layers import Dense, Dropout, Flatten | |
from keras.utils import np_utils | |
from keras.datasets import mnist | |
from keras.callbacks import TensorBoard | |
import keras.backend.tensorflow_backend as KTF | |
import tensorflow as tf | |
import numpy as np | |
def convert_one_hot(label): | |
label = np.reshape(np.array(label), (-1, 1)) | |
label = np_utils.to_categorical(label) | |
return label | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) | |
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) | |
y_train = convert_one_hot(y_train) | |
y_test = convert_one_hot(y_test) | |
# --for using tensorboard-- | |
old_session = KTF.get_session() | |
session = tf.Session('') | |
KTF.set_session(session) | |
KTF.set_learning_phase(1) | |
# -------------------------- | |
model = Sequential() | |
model.add(Convolution2D(32, kernel_size=(3, 3), input_shape=(28, 28, 1), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(10, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# --for using tensorboard-- | |
tb_cb = TensorBoard(log_dir="~/tflog/", histogram_freq=1) | |
cbks = [tb_cb] | |
# -------------------------- | |
result = model.fit(x_train, y_train, epochs=10, verbose=1, callbacks=cbks, validation_data=(x_test, y_test)) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) | |
# --for using tensorboard-- | |
KTF.set_session(old_session) | |
# -------------------------- |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment