Created
July 25, 2012 11:55
-
-
Save Shreyes2010/3175748 to your computer and use it in GitHub Desktop.
Persistence measure : Rolling regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Reading the relevent files | |
install.packages("zoo") | |
library(zoo) | |
ife <- read.csv("CPI_Data.csv") | |
ife_wpi <- read.csv("WPI_Data_1.csv") | |
# Function to compute Y-o-Y inflation rate | |
yoy.inf <- function(series){ | |
y <- rep(NA,length(series)) | |
for(i in 13:length(series))y[i] <- ((series[i] - series[i-12])/series[i-1])*100 | |
return(y) | |
} | |
# Computing inflation using seasonally adjusted data | |
ife$YOY_inf <- yoy.inf(ife$CPI_SA) | |
inf <-zoo(ife$YOY_inf[13:length(ife$YOY_inf)]) | |
ife_wpi$YOY_SA <- yoy.inf(ife_wpi$WPI_SA) | |
inf.wpi <- zoo(ife_wpi$YOY_SA[13:length(ife_wpi$YOY_SA)]) | |
## Rolling regression results for CPI data | |
## The window of values is of 123 observations | |
## And the window moves by one observation at a time | |
## So its an highly overlapping window. | |
slope <- rep(NA, 121) | |
upper <- rep(NA, 121) | |
lower <- rep(NA, 121) | |
for(i in 0:120) | |
{ | |
inf.1 <- window(inf, start = 12 + i, end = 123 + i) | |
inf.lag.1 <- window(inf, start = 11 + i, end = 123 + i -1) | |
inf.diff.1 <- window(diff(inf), start = 2 + i, end = 123 + i -10) | |
inf.diff.2 <- window(diff(inf), start = 3 + i, end = 123 + i - 9) | |
inf.diff.3 <- window(diff(inf), start = 4 + i, end = 123 + i - 8) | |
inf.diff.4 <- window(diff(inf), start = 5 + i, end = 123 + i - 7) | |
inf.diff.5 <- window(diff(inf), start = 6 + i, end = 123 + i - 6) | |
inf.diff.6 <- window(diff(inf), start = 7 + i, end = 123 + i - 5) | |
inf.diff.7 <- window(diff(inf), start = 8 + i, end = 123 + i - 4) | |
inf.diff.8 <- window(diff(inf), start = 9 + i, end = 123 + i - 3) | |
inf.diff.9 <- window(diff(inf), start = 10 + i, end = 123 + i - 2) | |
inf.diff.10 <- window(diff(inf), start = 11 + i, end = 123 + i - 1) | |
fit <- summary(lm(inf.1 ~ inf.lag.1 + inf.diff.1 + inf.diff.2 + inf.diff.3 + inf.diff.4 + | |
inf.diff.5 + inf.diff.6 + inf.diff.7 + inf.diff.8 + inf.diff.9 + inf.diff.10)) | |
slope[i+1] <- fit$coefficients[3] | |
upper[i+1] <- fit$coefficients[3] + 2*fit$coefficients[16] | |
lower[i+1] <- fit$coefficients[3] - 2*fit$coefficients[16] | |
} | |
plot(ts(slope), type = "l", col = "red", main ="Persistence level in the CPI series(1990:M4 - 2011:M6)", ylab = "Rho", xlab = "Time", ylim = c(-0.2,0.8)) | |
lines(ts(upper), type = "l", lty = "dotted") | |
lines(ts(lower), type = "l", lty = "dotted") | |
legend("topleft", c("Rho","95% CI band"), col = c("Red", "black"), lty = c(1,2), cex = 0.8) | |
## Rolling regression results for WPI data | |
slope.wpi <- rep(NA, 93) | |
upper.wpi <- rep(NA, 93) | |
lower.wpi <- rep(NA, 93) | |
for(i in 0:92){ | |
inf.wpi.1 <- window(inf.wpi, start = 12 + i, end = 100 + i) | |
inf.wpi.lag.1 <- window(inf.wpi, start = 11 + i, end = 100 + i -1) | |
inf.wpi.diff.1 <- window(diff(inf.wpi), start = 2 + i, end = 100 + i -10) | |
inf.wpi.diff.2 <- window(diff(inf.wpi), start = 3 + i, end = 100 + i - 9) | |
inf.wpi.diff.3 <- window(diff(inf.wpi), start = 4 + i, end = 100 + i - 8) | |
inf.wpi.diff.4 <- window(diff(inf.wpi), start = 5 + i, end = 100 + i - 7) | |
inf.wpi.diff.5 <- window(diff(inf.wpi), start = 6 + i, end = 100 + i - 6) | |
inf.wpi.diff.6 <- window(diff(inf.wpi), start = 7 + i, end = 100 + i - 5) | |
inf.wpi.diff.7 <- window(diff(inf.wpi), start = 8 + i, end = 100 + i - 4) | |
inf.wpi.diff.8 <- window(diff(inf.wpi), start = 9 + i, end = 100 + i - 3) | |
inf.wpi.diff.9 <- window(diff(inf.wpi), start = 10 + i, end = 100 + i - 2) | |
inf.wpi.diff.10 <- window(diff(inf.wpi), start = 11 + i, end = 100 + i - 1) | |
fit <- summary(lm(inf.wpi.1 ~ inf.wpi.lag.1 + inf.wpi.diff.1 + inf.wpi.diff.2 + inf.wpi.diff.3 + inf.wpi.diff.4 + | |
inf.wpi.diff.5 + inf.wpi.diff.6 + inf.wpi.diff.7 + inf.wpi.diff.8 + inf.wpi.diff.9 + inf.wpi.diff.10)) | |
slope.wpi[i+1] <- fit$coefficients[3] | |
upper.wpi[i+1] <- fit$coefficients[3] + 2*fit$coefficients[16] | |
lower.wpi[i+1] <- fit$coefficients[3] - 2*fit$coefficients[16] | |
} | |
plot(ts(slope.wpi), type = "l", col = "red", main ="Persistence level in the WPI series(1995:M1 - 2011:M12)", ylab = "Rho", xlab = "Time", ylim = c(-0.2, 0.8)) | |
lines(ts(upper.wpi), type = "l", lty = "dotted") | |
lines(ts(lower.wpi), type = "l", lty = "dotted") | |
legend("topleft", c("Rho","95% CI band"), col = c("Red", "black"), lty = c(1,2), cex = 0.8) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment