Created
July 30, 2024 18:01
-
-
Save SimonBrandner/211ba4d9b64be471144402309e9b861d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
impl FrameProcessor { | |
pub fn new() -> Self { | |
let device = NdArrayDevice::default(); | |
let detector: detector::Model<Backend> = detector::Model::default(); | |
let recognizer: recognizer::Model<Backend> = recognizer::Model::default(); | |
Self { | |
device, | |
detector, | |
recognizer, | |
} | |
} | |
pub fn process_frame(&self, frame: &RgbImage) -> Vec<DetectedFace> { | |
assert_eq!( | |
frame.width(), | |
DETECTOR_INPUT_SIZE.x, | |
"Image width does not match network requirements!" | |
); | |
assert_eq!( | |
frame.height(), | |
DETECTOR_INPUT_SIZE.y, | |
"Image height does not match network requirements!" | |
); | |
let detector_input = self.normalize_detector_input(frame); | |
let detector_output = self.detector.forward(detector_input); | |
let face_rectangles = self.interpret_detector_output(detector_output); | |
let mut frame = frame.clone(); | |
for face_rectangle in &face_rectangles { | |
let recognizer_input = self.normalize_recognizer_input(&mut frame, face_rectangle); | |
let recognizer_output = self.recognizer.forward(recognizer_input); | |
println!("{}", recognizer_output); | |
} | |
println!("Len: {}", face_rectangles.len()); | |
// For now we fill the `face` field with `default()` | |
face_rectangles | |
.into_iter() | |
.map(|rectangle| DetectedFace { | |
face: Face::default(), | |
rectangle, | |
}) | |
.collect() | |
} | |
fn normalize_recognizer_input( | |
&self, | |
frame: &mut Frame, | |
face_rectangle: &Rectangle<u32>, | |
) -> Tensor<Backend, 4> { | |
let cropped = crop( | |
frame, | |
face_rectangle.min.x, | |
face_rectangle.min.y, | |
face_rectangle.max.x + face_rectangle.min.x, | |
face_rectangle.max.y + face_rectangle.min.y, | |
); | |
let resized = resize( | |
&cropped.to_image(), | |
RECOGNIZER_INPUT_SIZE.x, | |
RECOGNIZER_INPUT_SIZE.y, | |
FilterType::CatmullRom, | |
); | |
// Shape of the image: height, width, channels | |
let shape = [ | |
RECOGNIZER_INPUT_SIZE.y as usize, | |
RECOGNIZER_INPUT_SIZE.x as usize, | |
3 as usize, | |
]; | |
// Make into a tensor | |
let tensor = Tensor::from_data(TensorData::new(resized.to_vec(), shape), &self.device); | |
// Normalize between [-1, 1] | |
let normalized = (tensor - Tensor::full(shape, 127, &self.device)) / 128; | |
// Reorder dimension to have: channels, height, width | |
let permutated = normalized.permute([2, 0, 1]); | |
// Make the tensor the correct shape: batch, channels, height, width | |
let unsqueezed = permutated.unsqueeze::<4>(); | |
unsqueezed | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment