Created
October 12, 2015 19:35
-
-
Save SimonGoring/9ef7eafc919bcbba4e0a to your computer and use it in GitHub Desktop.
Basic layout for doing simple cluster analysis in R using the Neotoma Package, across the forest, prairie boundary.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(neotoma) | |
ostracode <- get_dataset(datasettype='ostracode surface sample', loc=c(-100,43,-92,48)) | |
chemistry <- get_dataset(datasettype='water chemistry', loc=c(-100,43,-92,48)) | |
diatoms <- get_dataset(datasettype='diatom surface sample', loc=c(-100,43,-92,48)) | |
pollen <- get_dataset(datasettype='pollen surface sample', loc=c(-100,43,-92,48)) | |
ostracode_dl <- get_download(ostracode) | |
chemistry_dl <- get_download(chemistry) | |
diamtom_dl <- get_download(diatoms) | |
pollen_dl <- get_download(pollen) | |
# This works because these methods were designed for pollen data largely. | |
# Compiles the pollen data to | |
pollen_dc <- compile_downloads(compile_taxa(pollen_dl, 'P25')) | |
pollen_dc_ppt <- pollen_dc[,11:34] / rowSums(pollen_dc[,11:34], na.rm=TRUE) | |
plot(hclust(dist(pollen_dc_ppt)), cex=0.5) | |
# These don't because we have variable column lengths & other issues in the data that need to be addressed in the 'counts' method. | |
chem_counts <- do.call(rbind.data.frame,counts(chemistry_dl)) | |
ostracode_counts <- do.call(rbind.data.frame,counts(ostracode_dl)) | |
diatom_counts <- do.call(rbind.data.frame,counts(diatom_dl)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment