Created
July 17, 2024 10:38
-
-
Save SirmaXX/66e79fc241afbe05529121c3351960c9 to your computer and use it in GitHub Desktop.
feterated learning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
from flwr.client import ClientApp, NumPyClient | |
import tensorflow as tf | |
from flwr_datasets import FederatedDataset | |
# Parse arguments | |
parser = argparse.ArgumentParser(description="Flower") | |
parser.add_argument("--partition-id", type=int, choices=[0, 1, 2], default=0, help="Partition of the dataset") | |
args, _ = parser.parse_known_args() | |
# Load model and data | |
model = tf.keras.applications.MobileNetV2((32, 32, 3), classes=10, weights=None) | |
model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"]) | |
# Download and partition dataset | |
fds = FederatedDataset(dataset="cifar10", partitioners={"train": 3}) | |
partition = fds.load_partition(args.partition_id, "train") | |
partition.set_format("numpy") | |
partition = partition.train_test_split(test_size=0.2, seed=42) | |
x_train, y_train = partition["train"]["img"] / 255.0, partition["train"]["label"] | |
x_test, y_test = partition["test"]["img"] / 255.0, partition["test"]["label"] | |
# Define Flower client | |
class FlowerClient(NumPyClient): | |
def get_parameters(self, config): | |
return model.get_weights() | |
def fit(self, parameters, config): | |
model.set_weights(parameters) | |
model.fit(x_train, y_train, epochs=1, batch_size=32) | |
return model.get_weights(), len(x_train), {} | |
def evaluate(self, parameters, config): | |
model.set_weights(parameters) | |
loss, accuracy = model.evaluate(x_test, y_test) | |
return loss, len(x_test), {"accuracy": accuracy} | |
def client_fn(cid: str): | |
return FlowerClient().to_client() | |
# Flower ClientApp | |
app = ClientApp(client_fn=client_fn) | |
if __name__ == "__main__": | |
from flwr.client import start_client | |
start_client(server_address="127.0.0.1:8080", client=FlowerClient().to_client()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import List, Tuple | |
from flwr.server import ServerApp, ServerConfig | |
from flwr.server.strategy import FedAvg | |
from flwr.common import Metrics | |
# Define metric aggregation function | |
def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics: | |
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics] | |
examples = [num_examples for num_examples, _ in metrics] | |
return {"accuracy": sum(accuracies) / sum(examples)} | |
# Define strategy | |
strategy = FedAvg(evaluate_metrics_aggregation_fn=weighted_average) | |
# Define config | |
config = ServerConfig(num_rounds=3) | |
# Flower ServerApp | |
app = ServerApp(config=config, strategy=strategy) | |
if __name__ == "__main__": | |
from flwr.server import start_server | |
start_server(server_address="0.0.0.0:8080", config=config, strategy=strategy) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment