Created
May 6, 2020 22:22
-
-
Save SkalskiP/2e5c4498324d265b7251825b82d25f6a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class MaxPoolLayer(Layer): | |
def __init__(self, pool_size: Tuple[int, int], stride: int = 2): | |
self._pool_size = pool_size | |
self._stride = stride | |
self._a = None | |
self._cache = {} | |
def forward_pass(self, a_prev: np.array, training: bool) -> np.array: | |
self._a = np.array(a_prev, copy=True) | |
n, h_in, w_in, c = a_prev.shape | |
h_pool, w_pool = self._pool_size | |
h_out = 1 + (h_in - h_pool) // self._stride | |
w_out = 1 + (w_in - w_pool) // self._stride | |
output = np.zeros((n, h_out, w_out, c)) | |
for i in range(h_out): | |
for j in range(w_out): | |
h_start = i * self._stride | |
h_end = h_start + h_pool | |
w_start = j * self._stride | |
w_end = w_start + w_pool | |
a_prev_slice = a_prev[:, h_start:h_end, w_start:w_end, :] | |
self._save_mask(x=a_prev_slice, cords=(i, j)) | |
output[:, i, j, :] = np.max(a_prev_slice, axis=(1, 2)) | |
return output | |
def backward_pass(self, da_curr: np.array) -> np.array: | |
output = np.zeros_like(self._a) | |
_, h_out, w_out, _ = da_curr.shape | |
h_pool, w_pool = self._pool_size | |
for i in range(h_out): | |
for j in range(w_out): | |
h_start = i * self._stride | |
h_end = h_start + h_pool | |
w_start = j * self._stride | |
w_end = w_start + w_pool | |
output[:, h_start:h_end, w_start:w_end, :] += \ | |
da_curr[:, i:i + 1, j:j + 1, :] * self._cache[(i, j)] | |
return output | |
def _save_mask(self, x: np.array, cords: Tuple[int, int]) -> None: | |
mask = np.zeros_like(x) | |
n, h, w, c = x.shape | |
x = x.reshape(n, h * w, c) | |
idx = np.argmax(x, axis=1) | |
n_idx, c_idx = np.indices((n, c)) | |
mask.reshape(n, h * w, c)[n_idx, idx, c_idx] = 1 | |
self._cache[cords] = mask |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment