Last active
August 29, 2015 14:14
-
-
Save Slava/74276f5b7889a1d68a71 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <set> | |
#include <vector> | |
#include <cmath> | |
using namespace std; | |
typedef pair<long long, long long> pii; | |
set<pii> pq; | |
// limit <= 10^8 | |
vector<int> prime_numbers (int limit) { | |
const int SQRT_MAXN = 10000; | |
const int S = 1000; | |
vector<int> primes; | |
vector<int> res_primes; | |
bool nprime[SQRT_MAXN], bl[S]; | |
int cnt = 0; | |
memset(nprime, 0, sizeof nprime); | |
memset(bl, 0, sizeof bl); | |
int nsqrt = (int) sqrt (limit + .0); | |
for (int i=2; i<=nsqrt; ++i) | |
if (!nprime[i]) { | |
primes.push_back(i); | |
if (i * 1ll * i <= nsqrt) | |
for (int j=i*i; j<=nsqrt; j+=i) | |
nprime[j] = true; | |
} | |
cnt = (int) primes.size(); | |
int result = 0; | |
for (int k=0, maxk=limit/S; k<=maxk; ++k) { | |
memset (bl, 0, sizeof bl); | |
int start = k * S; | |
for (int i=0; i<cnt; ++i) { | |
int start_idx = (start + primes[i] - 1) / primes[i]; | |
int j = max(start_idx,2) * primes[i] - start; | |
for (; j<S; j+=primes[i]) | |
bl[j] = true; | |
} | |
if (k == 0) | |
bl[0] = bl[1] = true; | |
for (int i=0; i<S && start+i<=limit; ++i) | |
if (!bl[i]) | |
res_primes.push_back(start+i); | |
} | |
return res_primes; | |
} | |
int main () { | |
vector<int> p = prime_numbers(10000000); | |
for (int i = 0; i < (int)p.size(); i++) | |
pq.insert(make_pair(p[i] * 1LL, p[i] * 1LL)); | |
long long num = 1; | |
const long long MOD = 500500507LL; | |
// for every exponent in 2^500500 | |
for (int two_exp = 1; two_exp <= 500500; two_exp++) { | |
// take top of the heap | |
pii top = *pq.begin(); | |
pq.erase(pq.begin()); | |
// multiply the result | |
long long prime_exp = top.first; | |
num = (num * prime_exp) % MOD; | |
// put the new candidate back to the queue | |
long long new_base = top.second; | |
long long new_prime_exp = prime_exp * prime_exp; | |
pq.insert(pii(new_prime_exp, new_base)); | |
} | |
cout << num << endl; | |
return 0; | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Nice algorithm btw. Thanks for sharing 👍 Will study it & the maths behind it when done with the stuff at hand