Skip to content

Instantly share code, notes, and snippets.

@SmiffyKMc
Last active June 16, 2022 17:56
Show Gist options
  • Save SmiffyKMc/085da735a034ed396658622be1cdc040 to your computer and use it in GitHub Desktop.
Save SmiffyKMc/085da735a034ed396658622be1cdc040 to your computer and use it in GitHub Desktop.
First version of the CNN
import tensorflow as tf
from tensorflow import keras
from keras import layers
inputs = keras.Input(shape=(256, 256, 3))
x = layers.Rescaling(1./255)(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.Flatten()(x)
x = layers.Dense(516, activation=keras.activations.relu)(x)
outputs = layers.Dense(1, activation=keras.activations.sigmoid)(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.BinaryCrossentropy(),
metrics=["accuracy"])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment