Skip to content

Instantly share code, notes, and snippets.

@SmiffyKMc
Created June 17, 2022 14:24
Show Gist options
  • Save SmiffyKMc/a5be5e8057e02f9014f683d116d77445 to your computer and use it in GitHub Desktop.
Save SmiffyKMc/a5be5e8057e02f9014f683d116d77445 to your computer and use it in GitHub Desktop.
V2 of the CNN
inputs = keras.Input(shape=(256, 256, 3))
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(x)
x = layers.Conv2D(filters=32, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation=keras.activations.relu)(x)
x = layers.Flatten()(x)
x = layers.Dense(512, activation=keras.activations.relu)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation=keras.activations.sigmoid)(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.RMSprop(),
loss=keras.losses.BinaryCrossentropy(),
metrics=["accuracy"])
callbacks = [
keras.callbacks.ModelCheckpoint(
filepath=f"{hotDogDir}hotdog_classifier_v2.keras",
save_best_only=True,
monitor="val_loss"
)
]
history = model.fit(
train_dataset,
epochs=50,
validation_data=validation_dataset,
callbacks=callbacks
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment