Created
November 24, 2015 14:48
-
-
Save Smouking/60a589d2f2ef5a68ac6e to your computer and use it in GitHub Desktop.
c++ half float
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// half - IEEE 754-based half-precision floating point library. | |
// | |
// Copyright (c) 2012-2013 Christian Rau <[email protected]> | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation | |
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, | |
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the | |
// Software is furnished to do so, subject to the following conditions: | |
// | |
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | |
// | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE | |
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
// Version 1.11.0 | |
/// \file | |
/// Main header file for half precision functionality. | |
#ifndef HALF_HALF_HPP | |
#define HALF_HALF_HPP | |
/// Combined gcc version number. | |
#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__) | |
//check C++11 language features | |
#if defined(__clang__) //clang | |
#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
/*#elif defined(__INTEL_COMPILER) //Intel C++ | |
#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) ???????? | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) ???????? | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) ???????? | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_LONG_LONG) ???????? | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif*/ | |
#elif defined(__GNUC__) //gcc | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L | |
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) | |
#define HALF_ENABLE_CPP11_CONSTEXPR 1 | |
#endif | |
#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) | |
#define HALF_ENABLE_CPP11_NOEXCEPT 1 | |
#endif | |
#if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) | |
#define HALF_ENABLE_CPP11_USER_LITERALS 1 | |
#endif | |
#if !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#endif | |
#elif defined(_MSC_VER) //Visual C++ | |
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) | |
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1 | |
#endif | |
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG) | |
#define HALF_ENABLE_CPP11_LONG_LONG 1 | |
#endif | |
#define HALF_POP_WARNINGS 1 | |
#pragma warning(push) | |
#pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned | |
#endif | |
//check C++11 library features | |
#include <utility> | |
#if defined(_LIBCPP_VERSION) //libc++ | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 | |
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CSTDINT | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CMATH | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_HASH | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#endif | |
#elif defined(__GLIBCXX__) //libstdc++ | |
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 | |
#ifdef __clang__ | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT) | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH) | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH) | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#else | |
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT) | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH) | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH) | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#endif | |
#endif | |
#elif defined(_CPPLIB_VER) //Dinkumware/Visual C++ | |
#if _CPPLIB_VER >= 520 | |
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS | |
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_CSTDINT | |
#define HALF_ENABLE_CPP11_CSTDINT 1 | |
#endif | |
#ifndef HALF_ENABLE_CPP11_HASH | |
#define HALF_ENABLE_CPP11_HASH 1 | |
#endif | |
#endif | |
#if _CPPLIB_VER >= 610 | |
#ifndef HALF_ENABLE_CPP11_CMATH | |
#define HALF_ENABLE_CPP11_CMATH 1 | |
#endif | |
#endif | |
#endif | |
#undef HALF_GNUC_VERSION | |
//support constexpr | |
#if HALF_ENABLE_CPP11_CONSTEXPR | |
#define HALF_CONSTEXPR constexpr | |
#define HALF_CONSTEXPR_CONST constexpr | |
#else | |
#define HALF_CONSTEXPR | |
#define HALF_CONSTEXPR_CONST const | |
#endif | |
//support noexcept | |
#if HALF_ENABLE_CPP11_NOEXCEPT | |
#define HALF_NOEXCEPT noexcept | |
#define HALF_NOTHROW noexcept | |
#else | |
#define HALF_NOEXCEPT | |
#define HALF_NOTHROW throw() | |
#endif | |
#include <algorithm> | |
#include <iostream> | |
#include <limits> | |
#include <climits> | |
#include <cmath> | |
#include <cstring> | |
#if HALF_ENABLE_CPP11_TYPE_TRAITS | |
#include <type_traits> | |
#endif | |
#if HALF_ENABLE_CPP11_CSTDINT | |
#include <cstdint> | |
#endif | |
#if HALF_ENABLE_CPP11_HASH | |
#include <functional> | |
#endif | |
/// Default rounding mode. | |
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and `float`s as well as | |
/// for the half_cast() if not specifying a rounding mode explicitly. It can be redefined (before including half.hpp) to one | |
/// of the standard rounding modes using their respective constants or the equivalent values of `std::float_round_style`: | |
/// | |
/// `std::float_round_style` | value | rounding | |
/// ---------------------------------|-------|------------------------- | |
/// `std::round_indeterminate` | -1 | fastest (default) | |
/// `std::round_toward_zero` | 0 | toward zero | |
/// `std::round_to_nearest` | 1 | to nearest | |
/// `std::round_toward_infinity` | 2 | toward positive infinity | |
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity | |
/// | |
/// By default this is set to `-1` (`std::round_indeterminate`), which uses truncation (round toward zero, but with overflows | |
/// set to infinity) and is the fastest rounding mode possible. It can even be set to `std::numeric_limits<float>::round_style` | |
/// to synchronize the rounding mode with that of the underlying single-precision implementation. | |
#ifndef HALF_ROUND_STYLE | |
#define HALF_ROUND_STYLE -1 // = std::round_indeterminate | |
#endif | |
/// Tie-breaking behaviour for round to nearest. | |
/// This specifies if ties in round to nearest should be resolved by rounding to the nearest even value. By default this is | |
/// defined to `0` resulting in the faster but slightly more biased behaviour of rounding away from zero in half-way cases (and | |
/// thus equal to the round() function), but can be redefined to `1` (before including half.hpp) if more IEEE-conformant | |
/// behaviour is needed. | |
#ifndef HALF_ROUND_TIES_TO_EVEN | |
#define HALF_ROUND_TIES_TO_EVEN 0 // ties away from zero | |
#endif | |
/// Value signaling overflow. | |
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an | |
/// operation, in particular it just evaluates to positive infinity. | |
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity() | |
/// Fast half-precision fma function. | |
/// This symbol is only defined if the fma() function generally executes as fast as, or faster than, a separate | |
/// half-precision multiplication followed by an addition. Due to the internal single-precision implementation of all | |
/// arithmetic operations, this is in fact always the case. | |
#define FP_FAST_FMAH 1 | |
#ifndef FP_ILOGB0 | |
#define FP_ILOGB0 INT_MIN | |
#endif | |
#ifndef FP_ILOGBNAN | |
#define FP_ILOGBNAN INT_MAX | |
#endif | |
#ifndef FP_SUBNORMAL | |
#define FP_SUBNORMAL 0 | |
#endif | |
#ifndef FP_ZERO | |
#define FP_ZERO 1 | |
#endif | |
#ifndef FP_NAN | |
#define FP_NAN 2 | |
#endif | |
#ifndef FP_INFINITE | |
#define FP_INFINITE 3 | |
#endif | |
#ifndef FP_NORMAL | |
#define FP_NORMAL 4 | |
#endif | |
/// Main namespace for half precision functionality. | |
/// This namespace contains all the functionality provided by the library. | |
namespace half_float | |
{ | |
class half; | |
/// \internal | |
/// \brief Implementation details. | |
namespace detail | |
{ | |
#if HALF_ENABLE_CPP11_TYPE_TRAITS | |
/// Conditional type. | |
template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {}; | |
/// Helper for tag dispatching. | |
template<bool B> struct bool_type : std::integral_constant<bool,B> {}; | |
using std::true_type; | |
using std::false_type; | |
/// Type traits for floating point types. | |
template<typename T> struct is_float : std::is_floating_point<T> {}; | |
#else | |
/// Conditional type. | |
template<bool,typename T,typename> struct conditional { typedef T type; }; | |
template<typename T,typename F> struct conditional<false,T,F> { typedef F type; }; | |
/// Helper for tag dispatching. | |
template<bool> struct bool_type {}; | |
typedef bool_type<true> true_type; | |
typedef bool_type<false> false_type; | |
/// Type traits for floating point types. | |
template<typename> struct is_float : false_type {}; | |
template<typename T> struct is_float<const T> : is_float<T> {}; | |
template<typename T> struct is_float<volatile T> : is_float<T> {}; | |
template<typename T> struct is_float<const volatile T> : is_float<T> {}; | |
template<> struct is_float<float> : true_type {}; | |
template<> struct is_float<double> : true_type {}; | |
template<> struct is_float<long double> : true_type {}; | |
#endif | |
#if HALF_ENABLE_CPP11_CSTDINT | |
/// Unsigned integer of (at least) 16 bits width. | |
typedef std::uint_least16_t uint16; | |
/// Unsigned integer of (at least) 32 bits width. | |
typedef std::uint_least32_t uint32; | |
/// Fastest signed integer capable of holding all values of type uint16. | |
typedef std::int_fast32_t int17; | |
#else | |
/// Unsigned integer of (at least) 16 bits width. | |
typedef unsigned short uint16; | |
/// Unsigned integer of (at least) 32 bits width. | |
typedef conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long>::type uint32; | |
/// Fastest signed integer capable of holding all values of type uint16. | |
typedef conditional<std::numeric_limits<int>::digits>=16,int,long>::type int17; | |
#endif | |
/// Tag type for binary construction. | |
struct binary_t {}; | |
/// Tag for binary construction. | |
HALF_CONSTEXPR_CONST binary_t binary = binary_t(); | |
/// Temporary half-precision expression. | |
/// This class represents a half-precision expression which just stores a single-precision value internally. | |
struct expr | |
{ | |
/// Conversion constructor. | |
/// \param f single-precision value to convert | |
explicit HALF_CONSTEXPR expr(float f) : value_(f) {} | |
/// Conversion to single-precision. | |
/// \return single precision value representing expression value | |
HALF_CONSTEXPR operator float() const { return value_; } | |
private: | |
/// Internal expression value stored in single-precision. | |
float value_; | |
}; | |
/// SFINAE helper for generic half-precision functions. | |
/// This class template has to be specialized for each valid combination of argument types to provide a corresponding | |
/// `type` member equivalent to \a T. | |
/// \tparam T type to return | |
template<typename T,typename,typename=void,typename=void> struct enable {}; | |
template<typename T> struct enable<T,half,void,void> { typedef T type; }; | |
template<typename T> struct enable<T,expr,void,void> { typedef T type; }; | |
template<typename T> struct enable<T,half,half,void> { typedef T type; }; | |
template<typename T> struct enable<T,half,expr,void> { typedef T type; }; | |
template<typename T> struct enable<T,expr,half,void> { typedef T type; }; | |
template<typename T> struct enable<T,expr,expr,void> { typedef T type; }; | |
template<typename T> struct enable<T,half,half,half> { typedef T type; }; | |
template<typename T> struct enable<T,half,half,expr> { typedef T type; }; | |
template<typename T> struct enable<T,half,expr,half> { typedef T type; }; | |
template<typename T> struct enable<T,half,expr,expr> { typedef T type; }; | |
template<typename T> struct enable<T,expr,half,half> { typedef T type; }; | |
template<typename T> struct enable<T,expr,half,expr> { typedef T type; }; | |
template<typename T> struct enable<T,expr,expr,half> { typedef T type; }; | |
template<typename T> struct enable<T,expr,expr,expr> { typedef T type; }; | |
/// Return type for specialized generic 2-argument half-precision functions. | |
/// This class template has to be specialized for each valid combination of argument types to provide a corresponding | |
/// `type` member denoting the appropriate return type. | |
/// \tparam T first argument type | |
/// \tparam U first argument type | |
template<typename T,typename U> struct result : enable<expr,T,U> {}; | |
template<> struct result<half,half> { typedef half type; }; | |
/// \name Classification helpers | |
/// \{ | |
/// Check for infinity. | |
/// \tparam T argument type (builtin floating point type) | |
/// \param arg value to query | |
/// \retval true if infinity | |
/// \retval false else | |
template<typename T> bool builtin_isinf(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::isinf(arg); | |
#elif defined(_MSC_VER) | |
return !_finite(static_cast<double>(arg)) && !_isnan(static_cast<double>(arg)); | |
#else | |
return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity(); | |
#endif | |
} | |
/// Check for NaN. | |
/// \tparam T argument type (builtin floating point type) | |
/// \param arg value to query | |
/// \retval true if not a number | |
/// \retval false else | |
template<typename T> bool builtin_isnan(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::isnan(arg); | |
#elif defined(_MSC_VER) | |
return _isnan(static_cast<double>(arg)) != 0; | |
#else | |
return arg != arg; | |
#endif | |
} | |
/// Check sign. | |
/// \tparam T argument type (builtin floating point type) | |
/// \param arg value to query | |
/// \retval true if signbit set | |
/// \retval false else | |
template<typename T> bool builtin_signbit(T arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return std::signbit(arg); | |
#else | |
return arg < T() || (arg == T() && T(1)/arg < T()); | |
#endif | |
} | |
/// \} | |
/// \name Conversion | |
/// \{ | |
/// Convert IEEE single-precision to half-precision. | |
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \param value single-precision value | |
/// \return binary representation of half-precision value | |
template<std::float_round_style R> uint16 float2half_impl(float value, true_type) | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT | |
static_assert(std::numeric_limits<float>::is_iec559, "float to half conversion needs IEEE 754 conformant 'float' type"); | |
static_assert(sizeof(uint32)==sizeof(float), "float to half conversion needs unsigned integer type of exactly the size of a 'float'"); | |
#endif | |
static const uint16 base_table[512] = { | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, | |
0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00, | |
0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | |
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, | |
0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, | |
0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, | |
0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00 }; | |
static const unsigned char shift_table[512] = { | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, | |
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, | |
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, | |
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 }; | |
uint32 bits;// = *reinterpret_cast<uint32*>(&value); //violating strict aliasing! | |
std::memcpy(&bits, &value, sizeof(float)); | |
uint16 hbits = base_table[bits>>23] + static_cast<uint16>((bits&0x7FFFFF)>>shift_table[bits>>23]); | |
if(R == std::round_to_nearest) | |
hbits += (((bits&0x7FFFFF)>>(shift_table[bits>>23]-1))|(((bits>>23)&0xFF)==102)) & ((hbits&0x7C00)!=0x7C00) | |
#if HALF_ROUND_TIES_TO_EVEN | |
& (((((static_cast<uint32>(1)<<(shift_table[bits>>23]-1))-1)&bits)!=0)|hbits) | |
#endif | |
; | |
else if(R == std::round_toward_zero) | |
hbits -= ((hbits&0x7FFF)==0x7C00) & ~shift_table[bits>>23]; | |
else if(R == std::round_toward_infinity) | |
hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=102)& | |
((bits>>23)!=0)))&(hbits<0x7C00)) - ((hbits==0xFC00)&((bits>>23)!=511)); | |
else if(R == std::round_toward_neg_infinity) | |
hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=358)& | |
((bits>>23)!=256)))&(hbits<0xFC00)&(hbits>>15)) - ((hbits==0x7C00)&((bits>>23)!=255)); | |
return hbits; | |
} | |
/// Convert non-IEEE single-precision to half-precision. | |
/// \param value single-precision value | |
/// \return binary representation of half-precision value | |
template<std::float_round_style R> uint16 float2half_impl(float value, false_type) | |
{ | |
uint16 hbits = builtin_signbit(value) << 15; | |
if(value == 0.0f) | |
return hbits; | |
if(builtin_isnan(value)) | |
return hbits | 0x7FFF; | |
if(builtin_isinf(value)) | |
return hbits | 0x7C00; | |
int exp; | |
std::frexp(value, &exp); | |
if(exp > 16) | |
{ | |
if(R == std::round_toward_zero) | |
return hbits | 0x7BFF; | |
else if(R == std::round_toward_infinity) | |
return hbits | 0x7C00 - (hbits>>15); | |
else if(R == std::round_toward_neg_infinity) | |
return hbits | 0x7BFF + (hbits>>15); | |
return hbits | 0x7C00; | |
} | |
if(exp < -13) | |
value = std::ldexp(value, 24); | |
else | |
{ | |
value = std::ldexp(value, 11-exp); | |
hbits |= ((exp+14)<<10); | |
} | |
int ival = static_cast<int>(value); | |
hbits |= static_cast<uint16>(std::abs(ival)&0x3FF); | |
if(R == std::round_to_nearest) | |
{ | |
float diff = std::abs(value-static_cast<float>(ival)); | |
#if HALF_ROUND_TIES_TO_EVEN | |
hbits += (diff>0.5f) | ((diff==0.5f)&hbits); | |
#else | |
hbits += diff >= 0.5f; | |
#endif | |
} | |
else if(R == std::round_toward_infinity) | |
hbits += value > static_cast<float>(ival); | |
else if(R == std::round_toward_neg_infinity) | |
hbits += value < static_cast<float>(ival); | |
return hbits; | |
} | |
/// Convert single-precision to half-precision. | |
/// \param value single-precision value | |
/// \return binary representation of half-precision value | |
template<std::float_round_style R> uint16 float2half(float value) | |
{ | |
return float2half_impl<R>(value, bool_type<std::numeric_limits<float>::is_iec559&&sizeof(uint32)==sizeof(float)>()); | |
} | |
/// Convert integer to half-precision floating point. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \tparam S `true` if value negative, `false` else | |
/// \tparam T type to convert (builtin integer type) | |
/// \param value non-negative integral value | |
/// \return binary representation of half-precision value | |
template<std::float_round_style R,bool S,typename T> uint16 int2half_impl(T value) | |
{ | |
if(S) | |
value = -value; | |
uint16 bits = S << 15; | |
if(value > 65504) | |
{ | |
if(R == std::round_toward_infinity) | |
bits |= 0x7C00 - S; | |
else if(R == std::round_toward_neg_infinity) | |
bits |= 0x7BFF + S; | |
else | |
bits |= 0x7BFF + (R!=std::round_toward_zero); | |
} | |
else if(value) | |
{ | |
unsigned int m = value, exp = 25; | |
for(; m<0x400; m<<=1,--exp) ; | |
for(; m>0x7FF; m>>=1,++exp) ; | |
bits |= (exp<<10) | (m&0x3FF); | |
if(exp > 25) | |
{ | |
if(R == std::round_to_nearest) | |
bits += (value>>(exp-26)) & 1 | |
#if HALF_ROUND_TIES_TO_EVEN | |
& (((((1<<(exp-26))-1)&value)!=0)|bits) | |
#endif | |
; | |
else if(R == std::round_toward_infinity) | |
bits += ((value&((1<<(exp-25))-1))!=0) & !S; | |
else if(R == std::round_toward_neg_infinity) | |
bits += ((value&((1<<(exp-25))-1))!=0) & S; | |
} | |
} | |
return bits; | |
} | |
/// Convert integer to half-precision floating point. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \tparam T type to convert (builtin integer type) | |
/// \param value integral value | |
/// \return binary representation of half-precision value | |
template<std::float_round_style R,typename T> uint16 int2half(T value) | |
{ | |
return (value<0) ? int2half_impl<R,true>(value) : int2half_impl<R,false>(value); | |
} | |
/// Convert half-precision to IEEE single-precision. | |
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). | |
/// \param value binary representation of half-precision value | |
/// \return single-precision value | |
inline float half2float_impl(uint16 value, true_type) | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT | |
static_assert(std::numeric_limits<float>::is_iec559, "half to float conversion needs IEEE 754 conformant 'float' type"); | |
static_assert(sizeof(uint32)==sizeof(float), "half to float conversion needs unsigned integer type of exactly the size of a 'float'"); | |
#endif | |
static const uint32 mantissa_table[2048] = { | |
0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000, | |
0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, | |
0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000, | |
0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000, | |
0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, | |
0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, | |
0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, | |
0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, | |
0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, | |
0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, | |
0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, | |
0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, | |
0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, | |
0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, | |
0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, | |
0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, | |
0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000, | |
0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, | |
0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000, | |
0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, | |
0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, | |
0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, | |
0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, | |
0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, | |
0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, | |
0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, | |
0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, | |
0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, | |
0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, | |
0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, | |
0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, | |
0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, | |
0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000, | |
0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000, | |
0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, | |
0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, | |
0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000, | |
0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000, | |
0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, | |
0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, | |
0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000, | |
0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000, | |
0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, | |
0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, | |
0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000, | |
0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000, | |
0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, | |
0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, | |
0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000, | |
0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000, | |
0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, | |
0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, | |
0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000, | |
0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000, | |
0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, | |
0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, | |
0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000, | |
0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000, | |
0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, | |
0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, | |
0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000, | |
0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000, | |
0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, | |
0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, | |
0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, | |
0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, | |
0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, | |
0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, | |
0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, | |
0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, | |
0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, | |
0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, | |
0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, | |
0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, | |
0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, | |
0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, | |
0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, | |
0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, | |
0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, | |
0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, | |
0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, | |
0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, | |
0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, | |
0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, | |
0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, | |
0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, | |
0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, | |
0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, | |
0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, | |
0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, | |
0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, | |
0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, | |
0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, | |
0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, | |
0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, | |
0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, | |
0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, | |
0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, | |
0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, | |
0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, | |
0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, | |
0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, | |
0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, | |
0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, | |
0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, | |
0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, | |
0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, | |
0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, | |
0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, | |
0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, | |
0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, | |
0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, | |
0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, | |
0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, | |
0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, | |
0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, | |
0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, | |
0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, | |
0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, | |
0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, | |
0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, | |
0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, | |
0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, | |
0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, | |
0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, | |
0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, | |
0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, | |
0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 }; | |
static const uint32 exponent_table[64] = { | |
0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000, | |
0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, | |
0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000, | |
0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 }; | |
static const unsigned short offset_table[64] = { | |
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, | |
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 }; | |
uint32 bits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10]; | |
// uint32 bits = mantissa_table[(((value&0x7C00)!=0)<<10)+(value&0x3FF)] + exponent_table[value>>10]; | |
// return *reinterpret_cast<float*>(&bits); //violating strict aliasing! | |
float out; | |
std::memcpy(&out, &bits, sizeof(float)); | |
return out; | |
} | |
/// Convert half-precision to non-IEEE single-precision. | |
/// \param value binary representation of half-precision value | |
/// \return single-precision value | |
inline float half2float_impl(uint16 value, false_type) | |
{ | |
float out; | |
int abs = value & 0x7FFF; | |
if(abs > 0x7C00) | |
out = std::numeric_limits<float>::has_quiet_NaN ? std::numeric_limits<float>::quiet_NaN() : 0.0f; | |
else if(abs == 0x7C00) | |
out = std::numeric_limits<float>::has_infinity ? std::numeric_limits<float>::infinity() : std::numeric_limits<float>::max(); | |
else if(abs > 0x3FF) | |
out = std::ldexp(static_cast<float>((value&0x3FF)|0x400), (abs>>10)-25); | |
else | |
out = std::ldexp(static_cast<float>(abs), -24); | |
return (value&0x8000) ? -out : out; | |
} | |
/// Convert half-precision to single-precision. | |
/// \param value binary representation of half-precision value | |
/// \return single-precision value | |
inline float half2float(uint16 value) | |
{ | |
return half2float_impl(value, bool_type<std::numeric_limits<float>::is_iec559&&sizeof(uint32)==sizeof(float)>()); | |
} | |
/// Convert half-precision floating point to integer. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \tparam E `true` for round to even, `false` for round away from zero | |
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits) | |
/// \param value binary representation of half-precision value | |
/// \return integral value | |
template<std::float_round_style R,bool E,typename T> T half2int_impl(uint16 value) | |
{ | |
unsigned int e = value & 0x7FFF; | |
if(e >= 0x7C00) | |
return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max(); | |
if(e < 0x3800) | |
{ | |
if(R == std::round_toward_infinity) | |
return T(~(value>>15)&(e!=0)); | |
else if(R == std::round_toward_neg_infinity) | |
return -T(value>0x8000); | |
return T(); | |
} | |
int17 m = (value&0x3FF) | 0x400; | |
e >>= 10; | |
if(e < 25) | |
{ | |
if(R == std::round_indeterminate || R == std::round_toward_zero) | |
m >>= 25 - e; | |
else | |
{ | |
if(R == std::round_to_nearest) | |
m += (1<<(24-e)) - (~(m>>(25-e))&E); | |
else if(R == std::round_toward_infinity) | |
m += ((value>>15)-1) & ((1<<(25-e))-1U); | |
else if(R == std::round_toward_neg_infinity) | |
m += -(value>>15) & ((1<<(25-e))-1U); | |
m >>= 25 - e; | |
} | |
} | |
else | |
m <<= e - 25; | |
// if(std::numeric_limits<T>::digits < 16) | |
// return std::min(std::max(m, static_cast<int17>(std::numeric_limits<T>::min())), static_cast<int17>(std::numeric_limits<T>::max())); | |
return static_cast<T>((value&0x8000) ? -m : m); | |
} | |
/// Convert half-precision floating point to integer. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits) | |
/// \param value binary representation of half-precision value | |
/// \return integral value | |
template<std::float_round_style R,typename T> T half2int(uint16 value) { return half2int_impl<R,HALF_ROUND_TIES_TO_EVEN,T>(value); } | |
/// Convert half-precision floating point to integer using round-to-nearest-away-from-zero. | |
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits) | |
/// \param value binary representation of half-precision value | |
/// \return integral value | |
template<typename T> T half2int_up(uint16 value) { return half2int_impl<std::round_to_nearest,0,T>(value); } | |
/// Round half-precision number to nearest integer value. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \tparam E `true` for round to even, `false` for round away from zero | |
/// \param value binary representation of half-precision value | |
/// \return half-precision bits for nearest integral value | |
template<std::float_round_style R,bool E> uint16 round_half_impl(uint16 value) | |
{ | |
unsigned int e = value & 0x7FFF; | |
uint16 result = value; | |
if(e < 0x3C00) | |
{ | |
result &= 0x8000; | |
if(R == std::round_to_nearest) | |
result |= 0x3C00U & -(e>=(0x3800+E)); | |
else if(R == std::round_toward_infinity) | |
result |= 0x3C00U & -(~(value>>15)&(e!=0)); | |
else if(R == std::round_toward_neg_infinity) | |
result |= 0x3C00U & -(value>0x8000); | |
} | |
else if(e < 0x6400) | |
{ | |
e = 25 - (e>>10); | |
unsigned int mask = (1<<e) - 1; | |
if(R == std::round_to_nearest) | |
result += (1<<(e-1)) - (~(result>>e)&E); | |
else if(R == std::round_toward_infinity) | |
result += mask & ((value>>15)-1); | |
else if(R == std::round_toward_neg_infinity) | |
result += mask & -(value>>15); | |
result &= ~mask; | |
} | |
return result; | |
} | |
/// Round half-precision number to nearest integer value. | |
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding | |
/// \param value binary representation of half-precision value | |
/// \return half-precision bits for nearest integral value | |
template<std::float_round_style R> uint16 round_half(uint16 value) { return round_half_impl<R,HALF_ROUND_TIES_TO_EVEN>(value); } | |
/// Round half-precision number to nearest integer value using round-to-nearest-away-from-zero. | |
/// \param value binary representation of half-precision value | |
/// \return half-precision bits for nearest integral value | |
inline uint16 round_half_up(uint16 value) { return round_half_impl<std::round_to_nearest,0>(value); } | |
/// \} | |
struct functions; | |
template<typename> struct unary_specialized; | |
template<typename,typename> struct binary_specialized; | |
template<typename,typename,std::float_round_style> struct half_caster; | |
} | |
/// Half-precision floating point type. | |
/// This class implements an IEEE-conformant half-precision floating point type with the usual arithmetic operators and | |
/// conversions. It is implicitly convertible to single-precision floating point, which makes artihmetic expressions and | |
/// functions with mixed-type operands to be of the most precise operand type. Additionally all arithmetic operations | |
/// (and many mathematical functions) are carried out in single-precision internally. All conversions from single- to | |
/// half-precision are done using truncation (round towards zero), but temporary results inside chained arithmetic | |
/// expressions are kept in single-precision as long as possible (while of course still maintaining a strong half-precision type). | |
/// | |
/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and | |
/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which | |
/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the | |
/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of | |
/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most | |
/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit | |
/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if | |
/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on | |
/// nearly any reasonable platform. | |
/// | |
/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable | |
/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation. | |
class half | |
{ | |
friend struct detail::functions; | |
friend struct detail::unary_specialized<half>; | |
friend struct detail::binary_specialized<half,half>; | |
template<typename,typename,std::float_round_style> friend struct detail::half_caster; | |
friend class std::numeric_limits<half>; | |
#if HALF_ENABLE_CPP11_HASH | |
friend struct std::hash<half>; | |
#endif | |
public: | |
/// Default constructor. | |
/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics | |
/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics. | |
HALF_CONSTEXPR half() : data_() {} | |
/// Copy constructor. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to copy from | |
half(detail::expr rhs) : data_(detail::float2half<round_style>(rhs)) {} | |
/// Conversion constructor. | |
/// \param rhs float to convert | |
explicit half(float rhs) : data_(detail::float2half<round_style>(rhs)) {} | |
/// Conversion to single-precision. | |
/// \return single precision value representing expression value | |
operator float() const { return detail::half2float(data_); } | |
/// Assignment operator. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to copy from | |
/// \return reference to this half | |
half& operator=(detail::expr rhs) { return *this = static_cast<float>(rhs); } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to add | |
/// \return reference to this half | |
template<typename T> typename detail::enable<half&,T>::type operator+=(T rhs) { return *this += static_cast<float>(rhs); } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to subtract | |
/// \return reference to this half | |
template<typename T> typename detail::enable<half&,T>::type operator-=(T rhs) { return *this -= static_cast<float>(rhs); } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to multiply with | |
/// \return reference to this half | |
template<typename T> typename detail::enable<half&,T>::type operator*=(T rhs) { return *this *= static_cast<float>(rhs); } | |
/// Arithmetic assignment. | |
/// \tparam T type of concrete half expression | |
/// \param rhs half expression to divide by | |
/// \return reference to this half | |
template<typename T> typename detail::enable<half&,T>::type operator/=(T rhs) { return *this /= static_cast<float>(rhs); } | |
/// Assignment operator. | |
/// \param rhs single-precision value to copy from | |
/// \return reference to this half | |
half& operator=(float rhs) { data_ = detail::float2half<round_style>(rhs); return *this; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to add | |
/// \return reference to this half | |
half& operator+=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float(data_)+rhs); return *this; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to subtract | |
/// \return reference to this half | |
half& operator-=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float(data_)-rhs); return *this; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to multiply with | |
/// \return reference to this half | |
half& operator*=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float(data_)*rhs); return *this; } | |
/// Arithmetic assignment. | |
/// \param rhs single-precision value to divide by | |
/// \return reference to this half | |
half& operator/=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float(data_)/rhs); return *this; } | |
/// Prefix increment. | |
/// \return incremented half value | |
half& operator++() { return *this += 1.0f; } | |
/// Prefix decrement. | |
/// \return decremented half value | |
half& operator--() { return *this -= 1.0f; } | |
/// Postfix increment. | |
/// \return non-incremented half value | |
half operator++(int) { half out(*this); ++*this; return out; } | |
/// Postfix decrement. | |
/// \return non-decremented half value | |
half operator--(int) { half out(*this); --*this; return out; } | |
private: | |
/// Rounding mode to use (always `std::round_indeterminate`) | |
static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE); | |
/// Constructor. | |
/// \param bits binary representation to set half to | |
HALF_CONSTEXPR half(detail::binary_t, detail::uint16 bits) : data_(bits) {} | |
/// Internal binary representation | |
detail::uint16 data_; | |
}; | |
#if HALF_ENABLE_CPP11_USER_LITERALS | |
/// Library-defined half-precision literals. | |
/// Import this namespace to enable half-precision floating point literals: | |
/// ~~~~{.cpp} | |
/// using namespace half_float::literal; | |
/// half_float::half = 4.2_h; | |
/// ~~~~ | |
namespace literal | |
{ | |
/// Half literal. | |
/// While this returns an actual half-precision value, half literals can unfortunately not be constant expressions due | |
/// to rather involved single-to-half conversion. | |
/// \param value literal value | |
/// \return half with given value (if representable) | |
inline half operator "" _h(long double value) { return half(static_cast<float>(value)); } | |
} | |
#endif | |
namespace detail | |
{ | |
/// Wrapper implementing unspecialized half-precision functions. | |
struct functions | |
{ | |
/// Addition implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision sum stored in single-precision | |
static expr plus(float x, float y) { return expr(x+y); } | |
/// Subtraction implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision difference stored in single-precision | |
static expr minus(float x, float y) { return expr(x-y); } | |
/// Multiplication implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision product stored in single-precision | |
static expr multiplies(float x, float y) { return expr(x*y); } | |
/// Division implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision quotient stored in single-precision | |
static expr divides(float x, float y) { return expr(x/y); } | |
/// Output implementation. | |
/// \param out stream to write to | |
/// \param arg value to write | |
/// \return reference to stream | |
template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; } | |
/// Input implementation. | |
/// \param in stream to read from | |
/// \param arg half to read into | |
/// \return reference to stream | |
template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg) | |
{ | |
float f; | |
if(in >> f) | |
arg = f; | |
return in; | |
} | |
/// Modulo implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision division remainder stored in single-precision | |
static expr fmod(float x, float y) { return expr(std::fmod(x, y)); } | |
/// Remainder implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Half-precision division remainder stored in single-precision | |
static expr remainder(float x, float y) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::remainder(x, y)); | |
#else | |
if(builtin_isnan(x) || builtin_isnan(y)) | |
return expr(std::numeric_limits<float>::quiet_NaN()); | |
float ax = std::fabs(x), ay = std::fabs(y); | |
if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24)) | |
return expr(std::numeric_limits<float>::quiet_NaN()); | |
if(ay >= 65536.0f) | |
return expr(x); | |
if(ax == ay) | |
return expr(builtin_signbit(x) ? -0.0f : 0.0f); | |
ax = std::fmod(ax, ay+ay); | |
float y2 = 0.5f * ay; | |
if(ax > y2) | |
{ | |
ax -= ay; | |
if(ax >= y2) | |
ax -= ay; | |
} | |
return expr(builtin_signbit(x) ? -ax : ax); | |
#endif | |
} | |
/// Remainder implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \param quo address to store quotient bits at | |
/// \return Half-precision division remainder stored in single-precision | |
static expr remquo(float x, float y, int *quo) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::remquo(x, y, quo)); | |
#else | |
if(builtin_isnan(x) || builtin_isnan(y)) | |
return expr(std::numeric_limits<float>::quiet_NaN()); | |
bool sign = builtin_signbit(x), qsign = static_cast<bool>(sign^builtin_signbit(y)); | |
float ax = std::fabs(x), ay = std::fabs(y); | |
if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24)) | |
return expr(std::numeric_limits<float>::quiet_NaN()); | |
if(ay >= 65536.0f) | |
return expr(x); | |
if(ax == ay) | |
return *quo = qsign ? -1 : 1, expr(sign ? -0.0f : 0.0f); | |
ax = std::fmod(ax, 8.0f*ay); | |
int cquo = 0; | |
if(ax >= 4.0f * ay) | |
{ | |
ax -= 4.0f * ay; | |
cquo += 4; | |
} | |
if(ax >= 2.0f * ay) | |
{ | |
ax -= 2.0f * ay; | |
cquo += 2; | |
} | |
float y2 = 0.5f * ay; | |
if(ax > y2) | |
{ | |
ax -= ay; | |
++cquo; | |
if(ax >= y2) | |
{ | |
ax -= ay; | |
++cquo; | |
} | |
} | |
return *quo = qsign ? -cquo : cquo, expr(sign ? -ax : ax); | |
#endif | |
} | |
/// Positive difference implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return Positive difference stored in single-precision | |
static expr fdim(float x, float y) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::fdim(x, y)); | |
#else | |
return expr((x<=y) ? 0.0f : (x-y)); | |
#endif | |
} | |
/// Fused multiply-add implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \param z third operand | |
/// \return \a x * \a y + \a z stored in single-precision | |
static expr fma(float x, float y, float z) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF) | |
return expr(std::fma(x, y, z)); | |
#else | |
return expr(x*y+z); | |
#endif | |
} | |
/// Get NaN. | |
/// \return Half-precision quiet NaN | |
static half nanh(const char*) { return half(binary, 0x7FFF); } | |
/// Exponential implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr exp(float arg) { return expr(std::exp(arg)); } | |
/// Exponential implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr expm1(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::expm1(arg)); | |
#else | |
return expr(static_cast<float>(std::exp(static_cast<double>(arg))-1.0)); | |
#endif | |
} | |
/// Binary exponential implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr exp2(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::exp2(arg)); | |
#else | |
return expr(static_cast<float>(std::exp(arg*0.69314718055994530941723212145818))); | |
#endif | |
} | |
/// Logarithm implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr log(float arg) { return expr(std::log(arg)); } | |
/// Common logarithm implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr log10(float arg) { return expr(std::log10(arg)); } | |
/// Logarithm implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr log1p(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::log1p(arg)); | |
#else | |
return expr(static_cast<float>(std::log(1.0+arg))); | |
#endif | |
} | |
/// Binary logarithm implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr log2(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::log2(arg)); | |
#else | |
return expr(static_cast<float>(std::log(static_cast<double>(arg))*1.4426950408889634073599246810019)); | |
#endif | |
} | |
/// Square root implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr sqrt(float arg) { return expr(std::sqrt(arg)); } | |
/// Cubic root implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr cbrt(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::cbrt(arg)); | |
#else | |
if(builtin_isnan(arg) || builtin_isinf(arg)) | |
return expr(arg); | |
return expr(builtin_signbit(arg) ? -static_cast<float>(std::pow(std::fabs(static_cast<double>(arg)), 1.0/3.0)) : | |
static_cast<float>(std::pow(static_cast<double>(arg), 1.0/3.0))); | |
#endif | |
} | |
/// Hypotenuse implementation. | |
/// \param x first argument | |
/// \param y second argument | |
/// \return function value stored in single-preicision | |
static expr hypot(float x, float y) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::hypot(x, y)); | |
#else | |
return expr((builtin_isinf(x) || builtin_isinf(y)) ? std::numeric_limits<float>::infinity() : | |
static_cast<float>(std::sqrt(static_cast<double>(x)*x+static_cast<double>(y)*y))); | |
#endif | |
} | |
/// Power implementation. | |
/// \param base value to exponentiate | |
/// \param exp power to expontiate to | |
/// \return function value stored in single-preicision | |
static expr pow(float base, float exp) { return expr(std::pow(base, exp)); } | |
/// Sine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr sin(float arg) { return expr(std::sin(arg)); } | |
/// Cosine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr cos(float arg) { return expr(std::cos(arg)); } | |
/// Tan implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr tan(float arg) { return expr(std::tan(arg)); } | |
/// Arc sine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr asin(float arg) { return expr(std::asin(arg)); } | |
/// Arc cosine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr acos(float arg) { return expr(std::acos(arg)); } | |
/// Arc tangent implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr atan(float arg) { return expr(std::atan(arg)); } | |
/// Arc tangent implementation. | |
/// \param x first argument | |
/// \param y second argument | |
/// \return function value stored in single-preicision | |
static expr atan2(float x, float y) { return expr(std::atan2(x, y)); } | |
/// Hyperbolic sine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr sinh(float arg) { return expr(std::sinh(arg)); } | |
/// Hyperbolic cosine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr cosh(float arg) { return expr(std::cosh(arg)); } | |
/// Hyperbolic tangent implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr tanh(float arg) { return expr(std::tanh(arg)); } | |
/// Hyperbolic area sine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr asinh(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::asinh(arg)); | |
#else | |
return expr((arg==-std::numeric_limits<float>::infinity()) ? arg : static_cast<float>(std::log(arg+std::sqrt(arg*arg+1.0)))); | |
#endif | |
} | |
/// Hyperbolic area cosine implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr acosh(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::acosh(arg)); | |
#else | |
return expr((arg<-1.0f) ? std::numeric_limits<float>::quiet_NaN() : static_cast<float>(std::log(arg+std::sqrt(arg*arg-1.0)))); | |
#endif | |
} | |
/// Hyperbolic area tangent implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr atanh(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::atanh(arg)); | |
#else | |
return expr(static_cast<float>(0.5*std::log((1.0+arg)/(1.0-arg)))); | |
#endif | |
} | |
/// Error function implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr erf(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::erf(arg)); | |
#else | |
return expr(static_cast<float>(erf(static_cast<double>(arg)))); | |
#endif | |
} | |
/// Complementary implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr erfc(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::erfc(arg)); | |
#else | |
return expr(static_cast<float>(1.0-erf(static_cast<double>(arg)))); | |
#endif | |
} | |
/// Gamma logarithm implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr lgamma(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::lgamma(arg)); | |
#else | |
if(builtin_isinf(arg)) | |
return expr(std::numeric_limits<float>::infinity()); | |
double z = static_cast<double>(arg); | |
if(z < 0) | |
{ | |
double i, f = std::modf(-z, &i); | |
if(f == 0.0) | |
return expr(std::numeric_limits<float>::infinity()); | |
return expr(static_cast<float>(1.1447298858494001741434273513531-std::log(std::abs(std::sin(3.1415926535897932384626433832795*f)))-lgamma(1.0-z))); | |
} | |
// if(z < 8.0) | |
return expr(static_cast<float>(lgamma(static_cast<double>(arg)))); | |
return expr(static_cast<float>(0.5*(1.8378770664093454835606594728112-std::log(z))+z*(std::log(z+1.0/(12.0*z-1.0/(10.0*z)-1.0))-1.0))); | |
#endif | |
} | |
/// Gamma implementation. | |
/// \param arg function argument | |
/// \return function value stored in single-preicision | |
static expr tgamma(float arg) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::tgamma(arg)); | |
#else | |
double z = static_cast<double>(arg); | |
if(z == 0.0) | |
return builtin_signbit(z) ? expr(-std::numeric_limits<float>::infinity()) : expr(std::numeric_limits<float>::infinity()); | |
if(z < 0.0) | |
{ | |
double i, f = std::modf(-z, &i); | |
if(f == 0.0) | |
return expr(std::numeric_limits<float>::quiet_NaN()); | |
double sign = (std::fmod(i, 2.0)==0.0) ? -1.0 : 1.0; | |
return expr(static_cast<float>(sign*3.1415926535897932384626433832795/(std::sin(3.1415926535897932384626433832795*f)*std::exp(lgamma(1.0-z))))); | |
} | |
if(builtin_isinf(arg)) | |
return expr(arg); | |
// if(arg < 8.0f) | |
return expr(static_cast<float>(std::exp(lgamma(z)))); | |
return expr(static_cast<float>(std::sqrt(6.283185307179586476925286766559/z)*std::pow(0.36787944117144232159552377016146*(z+1.0/(12.0*z-1.0/(10.0*z))), z))); | |
#endif | |
} | |
/// Floor implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static half floor(half arg) { return half(binary, round_half<std::round_toward_neg_infinity>(arg.data_)); } | |
/// Ceiling implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static half ceil(half arg) { return half(binary, round_half<std::round_toward_infinity>(arg.data_)); } | |
/// Truncation implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static half trunc(half arg) { return half(binary, round_half<std::round_toward_zero>(arg.data_)); } | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static half round(half arg) { return half(binary, round_half_up(arg.data_)); } | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static long lround(half arg) { return detail::half2int_up<long>(arg.data_); } | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static half rint(half arg) { return half(binary, round_half<half::round_style>(arg.data_)); } | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static long lrint(half arg) { return detail::half2int<half::round_style,long>(arg.data_); } | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static long long llround(half arg) { return detail::half2int_up<long long>(arg.data_); } | |
/// Nearest integer implementation. | |
/// \param arg value to round | |
/// \return rounded value | |
static long long llrint(half arg) { return detail::half2int<half::round_style,long long>(arg.data_); } | |
#endif | |
/// Decompression implementation. | |
/// \param arg number to decompress | |
/// \param exp address to store exponent at | |
/// \return normalized significant | |
static half frexp(half arg, int *exp) | |
{ | |
unsigned int m = arg.data_ & 0x7FFF; | |
if(m >= 0x7C00 || !m) | |
return *exp = 0, arg; | |
int e = m >> 10; | |
if(!e) | |
for(m<<=1; m<0x400; m<<=1,--e) ; | |
return *exp = e-14, half(binary, static_cast<uint16>((arg.data_&0x8000)|0x3800|(m&0x3FF))); | |
} | |
/// Decompression implementation. | |
/// \param arg number to decompress | |
/// \param iptr address to store integer part at | |
/// \return fractional part | |
static half modf(half arg, half *iptr) | |
{ | |
unsigned int e = arg.data_ & 0x7C00; | |
if(e > 0x6000) | |
return *iptr = arg, (e==0x7C00&&(arg.data_&0x3FF)) ? arg : half(binary, arg.data_&0x8000); | |
if(e < 0x3C00) | |
return iptr->data_ = arg.data_ & 0x8000, arg; | |
e >>= 10; | |
unsigned int mask = (1<<(25-e)) - 1, m = arg.data_ & mask; | |
iptr->data_ = arg.data_ & ~mask; | |
if(!m) | |
return half(binary, arg.data_&0x8000); | |
for(; m<0x400; m<<=1,--e) ; | |
return half(binary, static_cast<uint16>((arg.data_&0x8000)|(e<<10)|(m&0x3FF))); | |
} | |
/// Scaling implementation. | |
/// \param arg number to scale | |
/// \param exp power of two to scale by | |
/// \return scaled number | |
static half scalbln(half arg, long exp) | |
{ | |
long e = arg.data_ & 0x7C00; | |
if(e == 0x7C00) | |
return arg; | |
unsigned int m = arg.data_ & 0x3FF; | |
if(e >>= 10) | |
m |= 0x400; | |
else | |
{ | |
if(!m) | |
return arg; | |
for(m<<=1; m<0x400; m<<=1,--e) ; | |
} | |
e += exp; | |
uint16 value = arg.data_ & 0x8000; | |
if(e > 30) | |
{ | |
if(half::round_style == std::round_toward_zero) | |
value |= 0x7BFF; | |
else if(half::round_style == std::round_toward_infinity) | |
value |= 0x7C00 - (value>>15); | |
else if(half::round_style == std::round_toward_neg_infinity) | |
value |= 0x7BFF + (value>>15); | |
else | |
value |= 0x7C00; | |
} | |
else if(e > 0) | |
value |= (e<<10) | (m&0x3FF); | |
else if(e > -11) | |
{ | |
if(half::round_style == std::round_to_nearest) | |
{ | |
m += 1 << -e; | |
#if HALF_ROUND_TIES_TO_EVEN | |
m -= (m>>(1-e)) & 1; | |
#endif | |
} | |
else if(half::round_style == std::round_toward_infinity) | |
m += ((value>>15)-1) & ((1<<(1-e))-1U); | |
else if(half::round_style == std::round_toward_neg_infinity) | |
m += -(value>>15) & ((1<<(1-e))-1U); | |
value |= m >> (1-e); | |
} | |
else if(half::round_style == std::round_toward_infinity) | |
value |= ((value>>15)-1) & 1; | |
else if(half::round_style == std::round_toward_neg_infinity) | |
value |= value >> 15; | |
return half(binary, value); | |
} | |
/// Exponent implementation. | |
/// \param arg number to query | |
/// \return floating point exponent | |
static int ilogb(half arg) | |
{ | |
int exp = arg.data_ & 0x7FFF; | |
if(!exp) | |
return FP_ILOGB0; | |
if(exp < 0x7C00) | |
{ | |
if(!(exp>>=10)) | |
for(unsigned int m=(arg.data_&0x3FF); m<0x200; m<<=1,--exp) ; | |
return exp - 15; | |
} | |
if(exp > 0x7C00) | |
return FP_ILOGBNAN; | |
return INT_MAX; | |
} | |
/// Exponent implementation. | |
/// \param arg number to query | |
/// \return floating point exponent | |
static half logb(half arg) | |
{ | |
int exp = arg.data_ & 0x7FFF; | |
if(!exp) | |
return half(binary, 0xFC00); | |
if(exp < 0x7C00) | |
{ | |
if(!(exp>>=10)) | |
for(unsigned int m=(arg.data_&0x3FF); m<0x200; m<<=1,--exp) ; | |
return half(static_cast<float>(exp-15)); | |
} | |
if(exp > 0x7C00) | |
return arg; | |
return half(binary, 0x7C00); | |
} | |
/// Enumeration implementation. | |
/// \param from number to increase/decrease | |
/// \param to direction to enumerate into | |
/// \return next representable number | |
static half nextafter(half from, half to) | |
{ | |
uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF; | |
if(fabs > 0x7C00) | |
return from; | |
if(tabs > 0x7C00 || from.data_ == to.data_ || !(fabs|tabs)) | |
return to; | |
if(!fabs) | |
return half(binary, (to.data_&0x8000)+1); | |
bool lt = (signbit(from) ? (static_cast<int17>(0x8000)-from.data_) : static_cast<int17>(from.data_)) < | |
(signbit(to) ? (static_cast<int17>(0x8000)-to.data_) : static_cast<int17>(to.data_)); | |
return half(binary, from.data_+(((from.data_>>15)^static_cast<uint16>(lt))<<1)-1); | |
} | |
/// Enumeration implementation. | |
/// \param from number to increase/decrease | |
/// \param to direction to enumerate into | |
/// \return next representable number | |
static half nexttoward(half from, long double to) | |
{ | |
if(isnan(from)) | |
return from; | |
long double lfrom = static_cast<long double>(from); | |
if(builtin_isnan(to) || lfrom == to) | |
return half(static_cast<float>(to)); | |
if(!(from.data_&0x7FFF)) | |
return half(binary, (static_cast<detail::uint16>(builtin_signbit(to))<<15)+1); | |
return half(binary, from.data_+(((from.data_>>15)^static_cast<uint16>(lfrom<to))<<1)-1); | |
} | |
/// Sign implementation | |
/// \param x first operand | |
/// \param y second operand | |
/// \return composed value | |
static half copysign(half x, half y) { return half(binary, x.data_^((x.data_^y.data_)&0x8000)); } | |
/// Classification implementation. | |
/// \param arg value to classify | |
/// \retval true if infinite number | |
/// \retval false else | |
static int fpclassify(half arg) | |
{ | |
unsigned int abs = arg.data_ & 0x7FFF; | |
if(abs > 0x7C00) | |
return FP_NAN; | |
if(abs == 0x7C00) | |
return FP_INFINITE; | |
if(abs > 0x3FF) | |
return FP_NORMAL; | |
return abs ? FP_SUBNORMAL : FP_ZERO; | |
} | |
/// Classification implementation. | |
/// \param arg value to classify | |
/// \retval true if finite number | |
/// \retval false else | |
static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; } | |
/// Classification implementation. | |
/// \param arg value to classify | |
/// \retval true if infinite number | |
/// \retval false else | |
static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; } | |
/// Classification implementation. | |
/// \param arg value to classify | |
/// \retval true if not a number | |
/// \retval false else | |
static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; } | |
/// Classification implementation. | |
/// \param arg value to classify | |
/// \retval true if normal number | |
/// \retval false else | |
static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); } | |
/// Sign bit implementation. | |
/// \param arg value to check | |
/// \retval true if signed | |
/// \retval false if unsigned | |
static bool signbit(half arg) { return (arg.data_&0x8000) != 0; } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands equal | |
/// \retval false else | |
static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands not equal | |
/// \retval false else | |
static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x > \a y | |
/// \retval false else | |
static bool isgreater(half x, half y) { return !isnan(x) && !isnan(y) && ((signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : | |
static_cast<int17>(x.data_)) > (signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x >= \a y | |
/// \retval false else | |
static bool isgreaterequal(half x, half y) { return !isnan(x) && !isnan(y) && ((signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : | |
static_cast<int17>(x.data_)) >= (signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x < \a y | |
/// \retval false else | |
static bool isless(half x, half y) { return !isnan(x) && !isnan(y) && ((signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : | |
static_cast<int17>(x.data_)) < (signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x <= \a y | |
/// \retval false else | |
static bool islessequal(half x, half y) { return !isnan(x) && !isnan(y) && ((signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : | |
static_cast<int17>(x.data_)) <= (signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))); } | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true neither \a x > \a y nor \a x < \a y | |
/// \retval false else | |
static bool islessgreater(half x, half y) | |
{ | |
if(isnan(x) || isnan(y)) | |
return false; | |
int17 a = signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : static_cast<int17>(x.data_); | |
int17 b = signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_); | |
return a < b || a > b; | |
} | |
/// Comparison implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operand unordered | |
/// \retval false else | |
static bool isunordered(half x, half y) { return isnan(x) || isnan(y); } | |
private: | |
static double erf(double arg) | |
{ | |
if(builtin_isinf(arg)) | |
return (arg<0.0) ? -1.0 : 1.0; | |
double x2 = static_cast<double>(arg) * static_cast<double>(arg), ax2 = 0.147 * x2; | |
double value = std::sqrt(1.0-std::exp(-x2*(1.2732395447351626861510701069801+ax2)/(1.0+ax2))); | |
return builtin_signbit(arg) ? -value : value; | |
} | |
static double lgamma(double arg) | |
{ | |
double v = 1.0; | |
for(; arg<8.0; ++arg) v *= arg; | |
double w = 1.0 / (arg * arg); | |
return (((((((-0.02955065359477124183006535947712*w+0.00641025641025641025641025641026)*w+ | |
-0.00191752691752691752691752691753)*w+8.4175084175084175084175084175084e-4)*w+ | |
-5.952380952380952380952380952381e-4)*w+7.9365079365079365079365079365079e-4)*w+ | |
-0.00277777777777777777777777777778)*w+0.08333333333333333333333333333333)/arg + | |
0.91893853320467274178032973640562 - std::log(v) - arg + (arg-0.5) * std::log(arg); | |
} | |
}; | |
/// Wrapper for unary half-precision functions needing specialization for individual argument types. | |
/// \tparam T argument type | |
template<typename T> struct unary_specialized | |
{ | |
/// Negation implementation. | |
/// \param arg value to negate | |
/// \return negated value | |
static HALF_CONSTEXPR half negate(half arg) { return half(binary, arg.data_^0x8000); } | |
/// Absolute value implementation. | |
/// \param arg function argument | |
/// \return absolute value | |
static half fabs(half arg) { return half(binary, arg.data_&0x7FFF); } | |
}; | |
template<> struct unary_specialized<expr> | |
{ | |
static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); } | |
static expr fabs(float arg) { return expr(std::fabs(arg)); } | |
}; | |
/// Wrapper for binary half-precision functions needing specialization for individual argument types. | |
/// \tparam T first argument type | |
/// \tparam U first argument type | |
template<typename T,typename U> struct binary_specialized | |
{ | |
/// Minimum implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return minimum value | |
static expr fmin(float x, float y) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::fmin(x, y)); | |
#else | |
if(builtin_isnan(x)) | |
return expr(y); | |
if(builtin_isnan(y)) | |
return expr(x); | |
return expr(std::min(x, y)); | |
#endif | |
} | |
/// Maximum implementation. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return maximum value | |
static expr fmax(float x, float y) | |
{ | |
#if HALF_ENABLE_CPP11_CMATH | |
return expr(std::fmax(x, y)); | |
#else | |
if(builtin_isnan(x)) | |
return expr(y); | |
if(builtin_isnan(y)) | |
return expr(x); | |
return expr(std::max(x, y)); | |
#endif | |
} | |
}; | |
template<> struct binary_specialized<half,half> | |
{ | |
static half fmin(half x, half y) | |
{ | |
if(functions::isnan(x)) | |
return y; | |
if(functions::isnan(y)) | |
return x; | |
return ((functions::signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : static_cast<int17>(x.data_)) > | |
(functions::signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))) ? y : x; | |
} | |
static half fmax(half x, half y) | |
{ | |
if(functions::isnan(x)) | |
return y; | |
if(functions::isnan(y)) | |
return x; | |
return ((functions::signbit(x) ? (static_cast<int17>(0x8000)-x.data_) : static_cast<int17>(x.data_)) < | |
(functions::signbit(y) ? (static_cast<int17>(0x8000)-y.data_) : static_cast<int17>(y.data_))) ? y : x; | |
} | |
}; | |
/// Helper class for half casts. | |
/// This class template has to be specialized for all valid cast argument to define an appropriate static `cast` member | |
/// function and a corresponding `type` member denoting its return type. | |
/// \tparam T destination type | |
/// \tparam U source type | |
/// \tparam R rounding mode to use | |
template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {}; | |
template<typename U,std::float_round_style R> struct half_caster<half,U,R> | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS | |
static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported"); | |
#endif | |
typedef half type; | |
static half cast(U arg) { return cast_impl(arg, is_float<U>()); }; | |
private: | |
static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(static_cast<float>(arg))); } | |
static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); } | |
}; | |
template<typename T,std::float_round_style R> struct half_caster<T,half,R> | |
{ | |
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS | |
static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported"); | |
#endif | |
typedef T type; | |
template<typename U> static T cast(U arg) { return cast_impl(arg, is_float<T>()); } | |
private: | |
static T cast_impl(float arg, true_type) { return static_cast<T>(arg); } | |
static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); } | |
}; | |
template<typename T,std::float_round_style R> struct half_caster<T,expr,R> : public half_caster<T,half,R> {}; | |
template<std::float_round_style R> struct half_caster<half,half,R> | |
{ | |
typedef half type; | |
static half cast(half arg) { return arg; } | |
}; | |
template<std::float_round_style R> struct half_caster<half,expr,R> : public half_caster<half,half,R> {}; | |
/// \name Comparison operators | |
/// \{ | |
/// Comparison for equality. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands equal | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); } | |
/// Comparison for inequality. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if operands not equal | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); } | |
/// Comparison for less than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less than \a y | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); } | |
/// Comparison for greater than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater than \a y | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); } | |
/// Comparison for less equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less equal \a y | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); } | |
/// Comparison for greater equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater equal \a y | |
/// \retval false else | |
template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); } | |
/// \} | |
/// \name Arithmetic operators | |
/// \{ | |
/// Add halfs. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return sum of half expressions | |
template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); } | |
/// Subtract halfs. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return difference of half expressions | |
template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); } | |
/// Multiply halfs. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return product of half expressions | |
template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); } | |
/// Divide halfs. | |
/// \param x left operand | |
/// \param y right operand | |
/// \return quotient of half expressions | |
template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); } | |
/// Identity. | |
/// \param arg operand | |
/// \return uncahnged operand | |
template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; } | |
/// Negation. | |
/// \param arg operand | |
/// \return negated operand | |
template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); } | |
/// \} | |
/// \name Input and output | |
/// \{ | |
/// Output operator. | |
/// \param out output stream to write into | |
/// \param arg half expression to write | |
/// \return reference to output stream | |
template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type | |
operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); } | |
/// Input operator. | |
/// \param in input stream to read from | |
/// \param arg half to read into | |
/// \return reference to input stream | |
template<typename charT,typename traits> std::basic_istream<charT,traits>& | |
operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); } | |
/// \} | |
/// \name Basic mathematical operations | |
/// \{ | |
/// Absolute value. | |
/// \param arg operand | |
/// \return absolute value of \a arg | |
// template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); } | |
inline half abs(half arg) { return unary_specialized<half>::fabs(arg); } | |
inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); } | |
/// Absolute value. | |
/// \param arg operand | |
/// \return absolute value of \a arg | |
// template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); } | |
inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); } | |
inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); } | |
/// Remainder of division. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return remainder of floating point division. | |
// template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); } | |
inline expr fmod(half x, half y) { return functions::fmod(x, y); } | |
inline expr fmod(half x, expr y) { return functions::fmod(x, y); } | |
inline expr fmod(expr x, half y) { return functions::fmod(x, y); } | |
inline expr fmod(expr x, expr y) { return functions::fmod(x, y); } | |
/// Remainder of division. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return remainder of floating point division. | |
// template<typename T,typename U> typename enable<expr,T,U>::type remainder(T x, U y) { return functions::remainder(x, y); } | |
inline expr remainder(half x, half y) { return functions::remainder(x, y); } | |
inline expr remainder(half x, expr y) { return functions::remainder(x, y); } | |
inline expr remainder(expr x, half y) { return functions::remainder(x, y); } | |
inline expr remainder(expr x, expr y) { return functions::remainder(x, y); } | |
/// Remainder of division. | |
/// \param x first operand | |
/// \param y second operand | |
/// \param quo address to store some bits of quotient at | |
/// \return remainder of floating point division. | |
// template<typename T,typename U> typename enable<expr,T,U>::type remquo(T x, U y, int *quo) { return functions::remquo(x, y, quo); } | |
inline expr remquo(half x, half y, int *quo) { return functions::remquo(x, y, quo); } | |
inline expr remquo(half x, expr y, int *quo) { return functions::remquo(x, y, quo); } | |
inline expr remquo(expr x, half y, int *quo) { return functions::remquo(x, y, quo); } | |
inline expr remquo(expr x, expr y, int *quo) { return functions::remquo(x, y, quo); } | |
/// Fused multiply add. | |
/// \param x first operand | |
/// \param y second operand | |
/// \param z third operand | |
/// \return ( \a x * \a y ) + \a z rounded as one operation. | |
// template<typename T,typename U,typename V> typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return functions::fma(x, y, z); } | |
inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); } | |
inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); } | |
inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); } | |
inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); } | |
inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); } | |
inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); } | |
inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); } | |
inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); } | |
/// Maximum of half expressions. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return maximum of operands | |
// template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); } | |
inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); } | |
inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); } | |
inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); } | |
inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); } | |
/// Minimum of half expressions. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return minimum of operands | |
// template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); } | |
inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); } | |
inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); } | |
inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); } | |
inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); } | |
/// Positive difference. | |
/// \param x first operand | |
/// \param y second operand | |
/// \return \a x - \a y or 0 if difference negative | |
// template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); } | |
inline expr fdim(half x, half y) { return functions::fdim(x, y); } | |
inline expr fdim(half x, expr y) { return functions::fdim(x, y); } | |
inline expr fdim(expr x, half y) { return functions::fdim(x, y); } | |
inline expr fdim(expr x, expr y) { return functions::fdim(x, y); } | |
/// Get NaN value. | |
/// \param arg descriptive string (ignored) | |
/// \return quiet NaN | |
inline half nanh(const char *arg) { return functions::nanh(arg); } | |
/// \} | |
/// \name Exponential functions | |
/// \{ | |
/// Exponential function. | |
/// \param arg function argument | |
/// \return e raised to \a arg | |
// template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); } | |
inline expr exp(half arg) { return functions::exp(arg); } | |
inline expr exp(expr arg) { return functions::exp(arg); } | |
/// Exponential minus one. | |
/// \param arg function argument | |
/// \return e raised to \a arg subtracted by 1 | |
// template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); } | |
inline expr expm1(half arg) { return functions::expm1(arg); } | |
inline expr expm1(expr arg) { return functions::expm1(arg); } | |
/// Binary exponential. | |
/// \param arg function argument | |
/// \return 2 raised to \a arg | |
// template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); } | |
inline expr exp2(half arg) { return functions::exp2(arg); } | |
inline expr exp2(expr arg) { return functions::exp2(arg); } | |
/// Natural logorithm. | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base e | |
// template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); } | |
inline expr log(half arg) { return functions::log(arg); } | |
inline expr log(expr arg) { return functions::log(arg); } | |
/// Common logorithm. | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base 10 | |
// template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); } | |
inline expr log10(half arg) { return functions::log10(arg); } | |
inline expr log10(expr arg) { return functions::log10(arg); } | |
/// Natural logorithm. | |
/// \param arg function argument | |
/// \return logarithm of \a arg plus 1 to base e | |
// template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); } | |
inline expr log1p(half arg) { return functions::log1p(arg); } | |
inline expr log1p(expr arg) { return functions::log1p(arg); } | |
/// Binary logorithm. | |
/// \param arg function argument | |
/// \return logarithm of \a arg to base 2 | |
// template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); } | |
inline expr log2(half arg) { return functions::log2(arg); } | |
inline expr log2(expr arg) { return functions::log2(arg); } | |
/// \} | |
/// \name Power functions | |
/// \{ | |
/// Square root. | |
/// \param arg function argument | |
/// \return square root of \a arg | |
// template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); } | |
inline expr sqrt(half arg) { return functions::sqrt(arg); } | |
inline expr sqrt(expr arg) { return functions::sqrt(arg); } | |
/// Cubic root. | |
/// \param arg function argument | |
/// \return cubic root of \a arg | |
// template<typename T> typename enable<expr,T>::type cbrt(T arg) { return functions::cbrt(arg); } | |
inline expr cbrt(half arg) { return functions::cbrt(arg); } | |
inline expr cbrt(expr arg) { return functions::cbrt(arg); } | |
/// Hypotenuse function. | |
/// \param x first argument | |
/// \param y second argument | |
/// \return square root of sum of squares without internal over- or underflows | |
// template<typename T,typename U> typename enable<expr,T,U>::type hypot(T x, U y) { return functions::hypot(x, y); } | |
inline expr hypot(half x, half y) { return functions::hypot(x, y); } | |
inline expr hypot(half x, expr y) { return functions::hypot(x, y); } | |
inline expr hypot(expr x, half y) { return functions::hypot(x, y); } | |
inline expr hypot(expr x, expr y) { return functions::hypot(x, y); } | |
/// Power function. | |
/// \param base first argument | |
/// \param exp second argument | |
/// \return \a base raised to \a exp | |
// template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); } | |
inline expr pow(half base, half exp) { return functions::pow(base, exp); } | |
inline expr pow(half base, expr exp) { return functions::pow(base, exp); } | |
inline expr pow(expr base, half exp) { return functions::pow(base, exp); } | |
inline expr pow(expr base, expr exp) { return functions::pow(base, exp); } | |
/// \} | |
/// \name Trigonometric functions | |
/// \{ | |
/// Sine function. | |
/// \param arg function argument | |
/// \return sine value of \a arg | |
// template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); } | |
inline expr sin(half arg) { return functions::sin(arg); } | |
inline expr sin(expr arg) { return functions::sin(arg); } | |
/// Cosine function. | |
/// \param arg function argument | |
/// \return cosine value of \a arg | |
// template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); } | |
inline expr cos(half arg) { return functions::cos(arg); } | |
inline expr cos(expr arg) { return functions::cos(arg); } | |
/// Tangent function. | |
/// \param arg function argument | |
/// \return tangent value of \a arg | |
// template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); } | |
inline expr tan(half arg) { return functions::tan(arg); } | |
inline expr tan(expr arg) { return functions::tan(arg); } | |
/// Arc sine. | |
/// \param arg function argument | |
/// \return arc sine value of \a arg | |
// template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); } | |
inline expr asin(half arg) { return functions::asin(arg); } | |
inline expr asin(expr arg) { return functions::asin(arg); } | |
/// Arc cosine function. | |
/// \param arg function argument | |
/// \return arc cosine value of \a arg | |
// template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); } | |
inline expr acos(half arg) { return functions::acos(arg); } | |
inline expr acos(expr arg) { return functions::acos(arg); } | |
/// Arc tangent function. | |
/// \param arg function argument | |
/// \return arc tangent value of \a arg | |
// template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); } | |
inline expr atan(half arg) { return functions::atan(arg); } | |
inline expr atan(expr arg) { return functions::atan(arg); } | |
/// Arc tangent function. | |
/// \param x first argument | |
/// \param y second argument | |
/// \return arc tangent value | |
// template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); } | |
inline expr atan2(half x, half y) { return functions::atan2(x, y); } | |
inline expr atan2(half x, expr y) { return functions::atan2(x, y); } | |
inline expr atan2(expr x, half y) { return functions::atan2(x, y); } | |
inline expr atan2(expr x, expr y) { return functions::atan2(x, y); } | |
/// \} | |
/// \name Hyperbolic functions | |
/// \{ | |
/// Hyperbolic sine. | |
/// \param arg function argument | |
/// \return hyperbolic sine value of \a arg | |
// template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); } | |
inline expr sinh(half arg) { return functions::sinh(arg); } | |
inline expr sinh(expr arg) { return functions::sinh(arg); } | |
/// Hyperbolic cosine. | |
/// \param arg function argument | |
/// \return hyperbolic cosine value of \a arg | |
// template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); } | |
inline expr cosh(half arg) { return functions::cosh(arg); } | |
inline expr cosh(expr arg) { return functions::cosh(arg); } | |
/// Hyperbolic tangent. | |
/// \param arg function argument | |
/// \return hyperbolic tangent value of \a arg | |
// template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); } | |
inline expr tanh(half arg) { return functions::tanh(arg); } | |
inline expr tanh(expr arg) { return functions::tanh(arg); } | |
/// Hyperbolic area sine. | |
/// \param arg function argument | |
/// \return area sine value of \a arg | |
// template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); } | |
inline expr asinh(half arg) { return functions::asinh(arg); } | |
inline expr asinh(expr arg) { return functions::asinh(arg); } | |
/// Hyperbolic area cosine. | |
/// \param arg function argument | |
/// \return area cosine value of \a arg | |
// template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); } | |
inline expr acosh(half arg) { return functions::acosh(arg); } | |
inline expr acosh(expr arg) { return functions::acosh(arg); } | |
/// Hyperbolic area tangent. | |
/// \param arg function argument | |
/// \return area tangent value of \a arg | |
// template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); } | |
inline expr atanh(half arg) { return functions::atanh(arg); } | |
inline expr atanh(expr arg) { return functions::atanh(arg); } | |
/// \} | |
/// \name Error and gamma functions | |
/// \{ | |
/// Error function. | |
/// \param arg function argument | |
/// \return error function value of \a arg | |
// template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); } | |
inline expr erf(half arg) { return functions::erf(arg); } | |
inline expr erf(expr arg) { return functions::erf(arg); } | |
/// Complementary error function. | |
/// \param arg function argument | |
/// \return 1 minus error function value of \a arg | |
// template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); } | |
inline expr erfc(half arg) { return functions::erfc(arg); } | |
inline expr erfc(expr arg) { return functions::erfc(arg); } | |
/// Natural logarithm of gamma function. | |
/// \param arg function argument | |
/// \return natural logarith of gamma function for \a arg | |
// template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); } | |
inline expr lgamma(half arg) { return functions::lgamma(arg); } | |
inline expr lgamma(expr arg) { return functions::lgamma(arg); } | |
/// Gamma function. | |
/// \param arg function argument | |
/// \return gamma function value of \a arg | |
// template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); } | |
inline expr tgamma(half arg) { return functions::tgamma(arg); } | |
inline expr tgamma(expr arg) { return functions::tgamma(arg); } | |
/// \} | |
/// \name Rounding | |
/// \{ | |
/// Nearest integer not less than half value. | |
/// \param arg half to round | |
/// \return nearest integer not less than \a arg | |
// template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); } | |
inline half ceil(half arg) { return functions::ceil(arg); } | |
inline half ceil(expr arg) { return functions::ceil(arg); } | |
/// Nearest integer not greater than half value. | |
/// \param arg half to round | |
/// \return nearest integer not greater than \a arg | |
// template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); } | |
inline half floor(half arg) { return functions::floor(arg); } | |
inline half floor(expr arg) { return functions::floor(arg); } | |
/// Nearest integer not greater in magnitude than half value. | |
/// \param arg half to round | |
/// \return nearest integer not greater in magnitude than \a arg | |
// template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); } | |
inline half trunc(half arg) { return functions::trunc(arg); } | |
inline half trunc(expr arg) { return functions::trunc(arg); } | |
/// Nearest integer. | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
// template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); } | |
inline half round(half arg) { return functions::round(arg); } | |
inline half round(expr arg) { return functions::round(arg); } | |
/// Nearest integer. | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
// template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); } | |
inline long lround(half arg) { return functions::lround(arg); } | |
inline long lround(expr arg) { return functions::lround(arg); } | |
/// Nearest integer using half's internal rounding mode. | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
// template<typename T> typename enable<half,T>::type nearbyint(T arg) { return functions::nearbyint(arg); } | |
inline half nearbyint(half arg) { return functions::rint(arg); } | |
inline half nearbyint(expr arg) { return functions::rint(arg); } | |
/// Nearest integer using half's internal rounding mode. | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
// template<typename T> typename enable<half,T>::type rint(T arg) { return functions::rint(arg); } | |
inline half rint(half arg) { return functions::rint(arg); } | |
inline half rint(expr arg) { return functions::rint(arg); } | |
/// Nearest integer using half's internal rounding mode. | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
// template<typename T> typename enable<long,T>::type lrint(T arg) { return functions::lrint(arg); } | |
inline long lrint(half arg) { return functions::lrint(arg); } | |
inline long lrint(expr arg) { return functions::lrint(arg); } | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
/// Nearest integer. | |
/// \param arg half to round | |
/// \return nearest integer, rounded away from zero in half-way cases | |
// template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); } | |
inline long long llround(half arg) { return functions::llround(arg); } | |
inline long long llround(expr arg) { return functions::llround(arg); } | |
/// Nearest integer using half's internal rounding mode. | |
/// \param arg half expression to round | |
/// \return nearest integer using default rounding mode | |
// template<typename T> typename enable<long long,T>::type llrint(T arg) { return functions::llrint(arg); } | |
inline long long llrint(half arg) { return functions::llrint(arg); } | |
inline long long llrint(expr arg) { return functions::llrint(arg); } | |
#endif | |
/// \} | |
/// \name Floating point manipulation | |
/// \{ | |
/// Decompress floating point number. | |
/// \param arg number to decompress | |
/// \param exp address to store exponent at | |
/// \return significant in range [0.5, 1) | |
// template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); } | |
inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); } | |
inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); } | |
/// Multiply by power of two. | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
// template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); } | |
inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); } | |
inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); } | |
/// Extract integer and fractional parts. | |
/// \param arg number to decompress | |
/// \param iptr address to store integer part at | |
/// \return fractional part | |
// template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); } | |
inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); } | |
inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); } | |
/// Multiply by power of two. | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
// template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); } | |
inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); } | |
inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); } | |
/// Multiply by power of two. | |
/// \param arg number to modify | |
/// \param exp power of two to multiply with | |
/// \return \a arg multplied by 2 raised to \a exp | |
// template<typename T> typename enable<half,T>::type scalbln(T arg, long exp) { return functions::scalbln(arg, exp); } | |
inline half scalbln(half arg, long exp) { return functions::scalbln(arg, exp); } | |
inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); } | |
/// Extract exponent. | |
/// \param arg number to query | |
/// \return floating point exponent | |
/// \retval FP_ILOGB0 for zero | |
/// \retval FP_ILOGBNAN for NaN | |
/// \retval MAX_INT for infinity | |
// template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); } | |
inline int ilogb(half arg) { return functions::ilogb(arg); } | |
inline int ilogb(expr arg) { return functions::ilogb(arg); } | |
/// Extract exponent. | |
/// \param arg number to query | |
/// \return floating point exponent | |
// template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); } | |
inline half logb(half arg) { return functions::logb(arg); } | |
inline half logb(expr arg) { return functions::logb(arg); } | |
/// Next representable value. | |
/// \param from value to compute next representable value for | |
/// \param to direction towards which to compute next value | |
/// \return next representable value after \a from in direction towards \a to | |
// template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); } | |
inline half nextafter(half from, half to) { return functions::nextafter(from, to); } | |
inline half nextafter(half from, expr to) { return functions::nextafter(from, to); } | |
inline half nextafter(expr from, half to) { return functions::nextafter(from, to); } | |
inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); } | |
/// Next representable value. | |
/// \param from value to compute next representable value for | |
/// \param to direction towards which to compute next value | |
/// \return next representable value after \a from in direction towards \a to | |
// template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); } | |
inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); } | |
inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); } | |
/// Take sign. | |
/// \param x value to change sign for | |
/// \param y value to take sign from | |
/// \return value equal to \a x in magnitude and to \a y in sign | |
// template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); } | |
inline half copysign(half x, half y) { return functions::copysign(x, y); } | |
inline half copysign(half x, expr y) { return functions::copysign(x, y); } | |
inline half copysign(expr x, half y) { return functions::copysign(x, y); } | |
inline half copysign(expr x, expr y) { return functions::copysign(x, y); } | |
/// \} | |
/// \name Floating point classification | |
/// \{ | |
/// Classify floating point value. | |
/// \param arg number to classify | |
/// \retval FP_ZERO for positive and negative zero | |
/// \retval FP_SUBNORMAL for subnormal numbers | |
/// \retval FP_INFINITY for positive and negative infinity | |
/// \retval FP_NAN for NaNs | |
/// \retval FP_NORMAL for all other (normal) values | |
// template<typename T> typename enable<int,T>::type fpclassify(T arg) { return functions::fpclassify(arg); } | |
inline int fpclassify(half arg) { return functions::fpclassify(arg); } | |
inline int fpclassify(expr arg) { return functions::fpclassify(arg); } | |
/// Check if finite number. | |
/// \param arg number to check | |
/// \retval true if neither infinity nor NaN | |
/// \retval false else | |
// template<typename T> typename enable<bool,T>::type isfinite(T arg) { return functions::isfinite(arg); } | |
inline bool isfinite(half arg) { return functions::isfinite(arg); } | |
inline bool isfinite(expr arg) { return functions::isfinite(arg); } | |
/// Check for infinity. | |
/// \param arg number to check | |
/// \retval true for positive or negative infinity | |
/// \retval false else | |
// template<typename T> typename enable<bool,T>::type isinf(T arg) { return functions::isinf(arg); } | |
inline bool isinf(half arg) { return functions::isinf(arg); } | |
inline bool isinf(expr arg) { return functions::isinf(arg); } | |
/// Check for NaN. | |
/// \param arg number to check | |
/// \retval true for NaNs | |
/// \retval false else | |
// template<typename T> typename enable<bool,T>::type isnan(T arg) { return functions::isnan(arg); } | |
inline bool isnan(half arg) { return functions::isnan(arg); } | |
inline bool isnan(expr arg) { return functions::isnan(arg); } | |
/// Check if normal number. | |
/// \param arg number to check | |
/// \retval true if normal number | |
/// \retval false if either subnormal, zero, infinity or NaN | |
// template<typename T> typename enable<bool,T>::type isnormal(T arg) { return functions::isnormal(arg); } | |
inline bool isnormal(half arg) { return functions::isnormal(arg); } | |
inline bool isnormal(expr arg) { return functions::isnormal(arg); } | |
/// Check sign. | |
/// \param arg number to check | |
/// \retval true for negative number | |
/// \retval false for positive number | |
// template<typename T> typename enable<bool,T>::type signbit(T arg) { return functions::signbit(arg); } | |
inline bool signbit(half arg) { return functions::signbit(arg); } | |
inline bool signbit(expr arg) { return functions::signbit(arg); } | |
/// \} | |
/// \name Comparison | |
/// \{ | |
/// Comparison for greater than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater than \a y | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type isgreater(T x, U y) { return functions::isgreater(x, y); } | |
inline bool isgreater(half x, half y) { return functions::isgreater(x, y); } | |
inline bool isgreater(half x, expr y) { return functions::isgreater(x, y); } | |
inline bool isgreater(expr x, half y) { return functions::isgreater(x, y); } | |
inline bool isgreater(expr x, expr y) { return functions::isgreater(x, y); } | |
/// Comparison for greater equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x greater equal \a y | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type isgreaterequal(T x, U y) { return functions::isgreaterequal(x, y); } | |
inline bool isgreaterequal(half x, half y) { return functions::isgreaterequal(x, y); } | |
inline bool isgreaterequal(half x, expr y) { return functions::isgreaterequal(x, y); } | |
inline bool isgreaterequal(expr x, half y) { return functions::isgreaterequal(x, y); } | |
inline bool isgreaterequal(expr x, expr y) { return functions::isgreaterequal(x, y); } | |
/// Comparison for less than. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less than \a y | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type isless(T x, U y) { return functions::isless(x, y); } | |
inline bool isless(half x, half y) { return functions::isless(x, y); } | |
inline bool isless(half x, expr y) { return functions::isless(x, y); } | |
inline bool isless(expr x, half y) { return functions::isless(x, y); } | |
inline bool isless(expr x, expr y) { return functions::isless(x, y); } | |
/// Comparison for less equal. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if \a x less equal \a y | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type islessequal(T x, U y) { return functions::islessequal(x, y); } | |
inline bool islessequal(half x, half y) { return functions::islessequal(x, y); } | |
inline bool islessequal(half x, expr y) { return functions::islessequal(x, y); } | |
inline bool islessequal(expr x, half y) { return functions::islessequal(x, y); } | |
inline bool islessequal(expr x, expr y) { return functions::islessequal(x, y); } | |
/// Comarison for less or greater. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if either less or greater | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type islessgreater(T x, U y) { return functions::islessgreater(x, y); } | |
inline bool islessgreater(half x, half y) { return functions::islessgreater(x, y); } | |
inline bool islessgreater(half x, expr y) { return functions::islessgreater(x, y); } | |
inline bool islessgreater(expr x, half y) { return functions::islessgreater(x, y); } | |
inline bool islessgreater(expr x, expr y) { return functions::islessgreater(x, y); } | |
/// Check if unordered. | |
/// \param x first operand | |
/// \param y second operand | |
/// \retval true if unordered (one or two NaN operands) | |
/// \retval false else | |
// template<typename T,typename U> typename enable<bool,T,U>::type isunordered(T x, U y) { return functions::isunordered(x, y); } | |
inline bool isunordered(half x, half y) { return functions::isunordered(x, y); } | |
inline bool isunordered(half x, expr y) { return functions::isunordered(x, y); } | |
inline bool isunordered(expr x, half y) { return functions::isunordered(x, y); } | |
inline bool isunordered(expr x, expr y) { return functions::isunordered(x, y); } | |
/// \name Casting | |
/// \{ | |
/// Cast to or from half-precision floating point number. | |
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. Floating point types are | |
/// converted via an explicit cast to/from `float` (using the rounding mode of the built-in single precision | |
/// implementation) and thus any possible warnings due to an otherwise implicit conversion to/from `float` will be | |
/// suppressed. Integer types are converted directly using the given rounding mode, without any roundtrip over `float` | |
/// that a `static_cast` would otherwise do. It uses the default rounding mode. | |
/// | |
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types | |
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler | |
/// error and casting between [half](\ref half_float::half)s is just a no-op. | |
/// \tparam T destination type (half or built-in arithmetic type) | |
/// \tparam U source type (half or built-in arithmetic type) | |
/// \param arg value to cast | |
/// \return \a arg converted to destination type | |
template<typename T,typename U> typename half_caster<T,U>::type half_cast(U arg) { return half_caster<T,U>::cast(arg); } | |
/// Cast to or from half-precision floating point number. | |
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. Floating point types are | |
/// converted via an explicit cast to/from `float` (using the rounding mode of the built-in single precision | |
/// implementation) and thus any possible warnings due to an otherwise implicit conversion to/from `float` will be | |
/// suppressed. Integer types are converted directly using the given rounding mode, without any roundtrip over `float` | |
/// that a `static_cast` would otherwise do. | |
/// | |
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types | |
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler | |
/// error and casting between [half](\ref half_float::half)s is just a no-op. | |
/// \tparam T destination type (half or built-in arithmetic type) | |
/// \tparam R rounding mode to use. | |
/// \tparam U source type (half or built-in arithmetic type) | |
/// \param arg value to cast | |
/// \return \a arg converted to destination type | |
template<typename T,std::float_round_style R,typename U> typename half_caster<T,U,R>::type half_cast(U arg) | |
{ return half_caster<T,U,R>::cast(arg); } | |
/// \} | |
} | |
using detail::operator==; | |
using detail::operator!=; | |
using detail::operator<; | |
using detail::operator>; | |
using detail::operator<=; | |
using detail::operator>=; | |
using detail::operator+; | |
using detail::operator-; | |
using detail::operator*; | |
using detail::operator/; | |
using detail::operator<<; | |
using detail::operator>>; | |
using detail::abs; | |
using detail::fabs; | |
using detail::fmod; | |
using detail::remainder; | |
using detail::remquo; | |
using detail::fma; | |
using detail::fmax; | |
using detail::fmin; | |
using detail::fdim; | |
using detail::nanh; | |
using detail::exp; | |
using detail::expm1; | |
using detail::exp2; | |
using detail::log; | |
using detail::log10; | |
using detail::log1p; | |
using detail::log2; | |
using detail::sqrt; | |
using detail::cbrt; | |
using detail::hypot; | |
using detail::pow; | |
using detail::sin; | |
using detail::cos; | |
using detail::tan; | |
using detail::asin; | |
using detail::acos; | |
using detail::atan; | |
using detail::atan2; | |
using detail::sinh; | |
using detail::cosh; | |
using detail::tanh; | |
using detail::asinh; | |
using detail::acosh; | |
using detail::atanh; | |
using detail::erf; | |
using detail::erfc; | |
using detail::lgamma; | |
using detail::tgamma; | |
using detail::ceil; | |
using detail::floor; | |
using detail::trunc; | |
using detail::round; | |
using detail::lround; | |
using detail::nearbyint; | |
using detail::rint; | |
using detail::lrint; | |
#if HALF_ENABLE_CPP11_LONG_LONG | |
using detail::llround; | |
using detail::llrint; | |
#endif | |
using detail::frexp; | |
using detail::ldexp; | |
using detail::modf; | |
using detail::scalbn; | |
using detail::scalbln; | |
using detail::ilogb; | |
using detail::logb; | |
using detail::nextafter; | |
using detail::nexttoward; | |
using detail::copysign; | |
using detail::fpclassify; | |
using detail::isfinite; | |
using detail::isinf; | |
using detail::isnan; | |
using detail::isnormal; | |
using detail::signbit; | |
using detail::isgreater; | |
using detail::isgreaterequal; | |
using detail::isless; | |
using detail::islessequal; | |
using detail::islessgreater; | |
using detail::isunordered; | |
using detail::half_cast; | |
} | |
/// Extensions to the C++ standard library. | |
namespace std | |
{ | |
/// Numeric limits for half-precision floats. | |
/// Because of the underlying single-precision implementation of many operations, it inherits some properties from | |
/// `std::numeric_limits<float>`. | |
template<> class numeric_limits<half_float::half> : public numeric_limits<float> | |
{ | |
public: | |
/// Supports signed values. | |
static HALF_CONSTEXPR_CONST bool is_signed = true; | |
/// Is not exact. | |
static HALF_CONSTEXPR_CONST bool is_exact = false; | |
/// Doesn't provide modulo arithmetic. | |
static HALF_CONSTEXPR_CONST bool is_modulo = false; | |
/// IEEE conformant. | |
static HALF_CONSTEXPR_CONST bool is_iec559 = true; | |
/// Supports infinity. | |
static HALF_CONSTEXPR_CONST bool has_infinity = true; | |
/// Supports quiet NaNs. | |
static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true; | |
/// Supports subnormal values. | |
static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present; | |
/// Rounding mode. | |
/// Due to the mix of internal single-precision computations (using the rounding mode of the underlying | |
/// single-precision implementation) with explicit truncation of the single-to-half conversions, the actual rounding | |
/// mode is indeterminate. | |
static HALF_CONSTEXPR_CONST float_round_style round_style = (std::numeric_limits<float>::round_style== | |
half_float::half::round_style) ? half_float::half::round_style : round_indeterminate; | |
/// Significant digits. | |
static HALF_CONSTEXPR_CONST int digits = 11; | |
/// Significant decimal digits. | |
static HALF_CONSTEXPR_CONST int digits10 = 3; | |
/// Required decimal digits to represent all possible values. | |
static HALF_CONSTEXPR_CONST int max_digits10 = 5; | |
/// Number base. | |
static HALF_CONSTEXPR_CONST int radix = 2; | |
/// One more than smallest exponent. | |
static HALF_CONSTEXPR_CONST int min_exponent = -13; | |
/// Smallest normalized representable power of 10. | |
static HALF_CONSTEXPR_CONST int min_exponent10 = -4; | |
/// One more than largest exponent | |
static HALF_CONSTEXPR_CONST int max_exponent = 16; | |
/// Largest finitely representable power of 10. | |
static HALF_CONSTEXPR_CONST int max_exponent10 = 4; | |
/// Smallest positive normal value. | |
static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); } | |
/// Smallest finite value. | |
static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); } | |
/// Largest finite value. | |
static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); } | |
/// Difference between one and next representable value. | |
static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); } | |
/// Maximum rounding error. | |
static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW | |
{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); } | |
/// Positive infinity. | |
static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); } | |
/// Quiet NaN. | |
static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); } | |
/// Signalling NaN. | |
static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); } | |
/// Smallest positive subnormal value. | |
static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); } | |
}; | |
#if HALF_ENABLE_CPP11_HASH | |
/// Hash function for half-precision floats. | |
/// This is only defined if C++11 `std::hash` is supported and enabled. | |
template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t> | |
{ | |
/// Type of function argument. | |
typedef half_float::half argument_type; | |
/// Function return type. | |
typedef size_t result_type; | |
/// Compute hash function. | |
/// \param arg half to hash | |
/// \return hash value | |
result_type operator()(argument_type arg) const | |
{ return hash<half_float::detail::uint16>()(static_cast<unsigned int>(arg.data_)&-(arg.data_!=0x8000)); } | |
}; | |
#endif | |
} | |
#undef HALF_CONSTEXPR | |
#undef HALF_CONSTEXPR_CONST | |
#undef HALF_NOEXCEPT | |
#undef HALF_NOTHROW | |
#ifdef HALF_POP_WARNINGS | |
#pragma warning(pop) | |
#undef HALF_POP_WARNINGS | |
#endif | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment