Account & Enterprise Guardian Intelligence System
Your Digital Footprint, Finally Visible
- What is AEGIS?
- Architecture Overview
- Components
- Agent Context Logging System
- LLM Failure Prevention Framework
- Database Schemas
- Quick Start
- API Reference
Ever wonder how many accounts you've created over the years? Which ones have 2FA? How much you're spending on subscriptions?
AEGIS is a local-first privacy dashboard that:
- Imports accounts from Chrome/Firefox/Brave/password managers (never stores passwords - only metadata)
- Tracks subscriptions and monthly costs across all your services
- Audits GitHub OAuth apps, SSH keys, and deploy keys for suspicious access
- Blocks trackers at the network layer (entire ASNs, not just domains)
- Visualizes your digital footprint in an interactive 3D knowledge graph
- Encrypted sync for multi-machine setups (AES-256-GCM)
- Agent context logging for AI-assisted development with crash recovery
All data stays local. No cloud. No telemetry.
flowchart TB
subgraph Frontend["React Dashboard (localhost:4242)"]
D[Dashboard Home]
S[System Status]
A[Accounts]
N[Network/DMBT]
P[Proxy/Ghost]
G[Knowledge Graph]
AI[AI Tracker]
end
subgraph Backend["Express API (localhost:4243)"]
API[Unified REST API]
PS[Prisma Service]
DS[DMBT Service]
GS[Ghost Service]
end
subgraph Databases["SQLite Databases"]
AEGIS_DB[(AEGIS DB<br/>Accounts, Subscriptions)]
DMBT_DB[(DMBT DB<br/>ASNs, IPs, Prefixes)]
GHOST_DB[(Ghost DB<br/>Requests, Cookies)]
CONTEXT_DB[(Agent Context DB<br/>Sessions, Actions)]
end
subgraph Agents["Privacy Agents"]
DMBT_AGENT[DMBT Agent<br/>Go :8088]
GHOST_PROXY[Ghost_Shell Proxy<br/>mitmproxy :8080]
end
Frontend --> API
API --> PS --> AEGIS_DB
API --> DS --> DMBT_DB
API --> GS --> GHOST_DB
DS --> DMBT_AGENT
GS --> GHOST_PROXY
style Frontend fill:#e1f5fe
style Backend fill:#f3e5f5
style Databases fill:#e8f5e9
style Agents fill:#fff3e0
mindmap
root((AEGIS Privacy Suite))
Dashboard
15 Pages
React + Vite
Tailwind CSS
Three.js 3D Graph
DMBT
Network Layer Blocking
ASN Discovery
Prefix Mapping
Firewall Rules
Ghost_Shell
Application Layer
Fingerprint Rotation
Cookie Blocking
Request Logging
Agent System
Context Logging
Crash Recovery
Failure Prevention
Multi-Agent Coordination
| Category | Page | Description |
|---|---|---|
| Core | Dashboard | Overview with stats and charts |
| System Status | All integrations health check | |
| Privacy Suite | Network (DMBT) | ASN/prefix blocking, IP intelligence |
| Proxy (Ghost) | Fingerprint rotation, cookie blocking | |
| Privacy Exposure | Data broker tracking | |
| Account Management | Accounts | Imported accounts from browsers |
| Subscriptions | Recurring payments tracking | |
| Discovery | Account discovery from browsing history | |
| Integrations | GitHub | OAuth apps and SSH key auditing |
| Social | Social media account tracker | |
| Finance | Financial/trading accounts | |
| Cloud Storage | Cloud service usage | |
| Tools | Assistant | Claude Code integration |
| Knowledge Graph | 3D relationship visualization | |
| AI Tracker | AI usage monitoring |
Network-layer privacy protection:
flowchart LR
subgraph Input
D[Domain List]
end
subgraph Collection
DNS[DNS Resolution]
CYMRU[Team Cymru<br/>ASN Lookup]
RIPE[RIPEstat<br/>Prefix Discovery]
end
subgraph Storage
DB[(DMBT Database)]
end
subgraph Output
FW[Windows Firewall<br/>Rules]
BL[Blocklist<br/>Export]
end
D --> DNS --> CYMRU --> RIPE --> DB
DB --> FW
DB --> BL
Current Stats (Live System):
- 17 domains tracked
- 38 IP mappings
- 5 ASNs discovered
- 25,242 prefixes mapped
Application-layer privacy protection:
flowchart TB
subgraph Browser
REQ[HTTP/S Request]
end
subgraph Ghost_Shell["Ghost_Shell Proxy (:8080)"]
BLOCK[Traffic Blocker]
FP[Fingerprint Randomizer]
COOKIE[Cookie Interceptor]
end
subgraph Internet
WEB[Website]
end
REQ --> BLOCK
BLOCK -->|Not blocked| FP
FP --> COOKIE
COOKIE --> WEB
BLOCK -->|Blocked| X[Blocked Response]
style X fill:#ff6b6b
Fingerprint Rotation Modes:
- Static - Fixed fingerprint per session
- Per-Domain - Different fingerprint per domain
- Per-Request - New fingerprint every request
- Timed - Rotate every N minutes
- Random - Random rotation timing
AEGIS includes a comprehensive agent context logging system for AI-assisted development with crash recovery.
erDiagram
agents ||--o{ activity_windows : "has sessions"
activity_windows ||--o{ action_log : "contains"
activity_windows ||--o{ context_snapshots : "has snapshots"
agents ||--o{ handoffs : "sends/receives"
agents {
text id PK "AGENT-PRIME-002"
text name "agent_prime"
text model "claude-opus-4-5"
text role "Primary agent"
text status "active"
}
activity_windows {
int id PK
text agent_id FK
text started_at
text ended_at
text status "active|completed|crashed"
}
action_log {
int id PK
int window_id FK
text action_type "read_file|edit_file|bash"
text action_summary
text target
text result "success|failure"
}
context_snapshots {
int id PK
int window_id FK
text current_task
text pending_items "JSON array"
text next_steps "JSON array"
}
handoffs {
int id PK
text from_agent FK
text to_agent FK
text message_type "task_delegation"
text message
}
sequenceDiagram
participant A as Agent
participant DB as Context DB
participant W as Activity Window
A->>DB: Register/Update Agent
DB-->>A: Agent ID confirmed
A->>W: Create Activity Window
W-->>A: window_id
loop Every Action
A->>DB: Log Action (type, summary, target)
end
loop Every 10-15 Actions
A->>DB: Create Context Snapshot
end
A->>W: End Session (status=completed)
flowchart TD
START[New Session] --> CHECK{Check for<br/>interrupted sessions?}
CHECK -->|Found| REVIEW[Review last snapshot<br/>& recent actions]
CHECK -->|None| NORMAL[Start fresh session]
REVIEW --> RESUME{Can resume?}
RESUME -->|Yes| CONTINUE[Continue from checkpoint]
RESUME -->|No| MARK[Mark as crashed, start fresh]
CONTINUE --> WORK[Continue work]
MARK --> NORMAL
NORMAL --> WORK
WORK --> LOG[Log actions continuously]
LOG --> SNAP{Every 10-15<br/>actions?}
SNAP -->|Yes| SNAPSHOT[Create snapshot]
SNAP -->|No| LOG
SNAPSHOT --> LOG
Based on research from "How Do LLMs Fail In Agentic Scenarios?" (Kamiwaza AI, 2025).
"Recovery capability, not initial correctness, best predicts overall success."
mindmap
root((LLM Agentic Failures))
Premature Action
Schema guessing
No verification before act
Assumed knowledge
Over-Helpfulness
Entity substitution
Constraint relaxation
Missing data invention
Context Pollution
Distractor confusion
Similar name conflation
Chekhov's Gun effect
Fragile Execution
Generation loops
Coherence loss
Tool call errors
flowchart TD
A[Task Received] --> B{Verify First?}
B -->|NO - Premature| C[Guess Schema/Structure]
B -->|YES - Grounded| D[Inspect Schema Tool]
C --> E[Execute with Assumptions]
D --> F[Build Accurate Query]
E --> G{Error?}
G -->|Yes| H[Recovery Loop]
G -->|No - Lucky| I[May Still Be Wrong]
F --> J[Correct Execution]
H --> K{Can Recover?}
K -->|Yes| D
K -->|No| L[FAILURE]
style C fill:#ff6b6b
style D fill:#51cf66
style L fill:#ff0000
style J fill:#00ff00
Prevention:
| Before... | ALWAYS... |
|---|---|
| SQL query | PRAGMA table_info() or schema read |
| File edit | Read file content first |
| API call | Check docs or test endpoint |
| Using entity name | Verify EXACT match |
flowchart TD
A[Query for Entity X] --> B{Entity Exists?}
B -->|Yes| C[Return Correct Data]
B -->|No| D{How to Handle?}
D -->|WRONG: Over-Helpful| E[Find Similar Entity Y]
D -->|WRONG: Invent| F[Create Plausible Data]
D -->|CORRECT| G[Return 0 or NULL]
E --> H[Return Y's Data as X]
F --> I[Return Invented Data]
G --> J[Accurate Response]
H --> K[SILENT FAILURE]
I --> K
J --> L[SUCCESS]
style E fill:#ff6b6b
style F fill:#ff6b6b
style G fill:#51cf66
style K fill:#ff0000
style L fill:#00ff00
Prevention: If uncertain, ASK - do not substitute or invent.
flowchart LR
subgraph Context
A[Relevant Table: ORDERS]
B[Distractor: PRODUCTS]
C[Distractor: BASE_PRICE]
end
subgraph Agent Reasoning
D[Task: Sum ORDER_AMT]
E{See BASE_PRICE in context}
F[Thinks: Must use it!]
G[Wrong: BASE_PRICE * ORDER_AMT]
end
A --> D
B --> E
C --> E
E --> F
F --> G
style G fill:#ff0000
style A fill:#51cf66
style B fill:#ffec99
style C fill:#ffec99
Key Finding: Even 671B parameter models are vulnerable. Size ≠ reliability.
sequenceDiagram
participant A as Agent
participant T as Tool
participant C as Context
A->>T: Execute Python (inline 100KB CSV)
T-->>A: Success
A->>C: Context now huge
A->>T: Debug error
T-->>A: Error message
A->>A: Retry with fix
loop Degradation Loop
A->>T: Another attempt
T-->>A: Another error
A->>A: Context grows
Note over A: Coherence decreasing
end
A->>A: Generation loop starts
Note over A: Repeated similar output...
A->>X: COHERENCE LOST
Prevention: Checkpoint every 3 actions for complex tasks.
pie title Recovery Success Rate by Model
"DeepSeek V3.1 (92%)" : 92
"Llama 4 Maverick (75%)" : 75
"Granite 4 Small (59%)" : 59
erDiagram
grounding_checks ||--o{ failure_incidents : "may_prevent"
failure_incidents ||--o{ recovery_attempts : "triggers"
context_markers ||--o{ failure_incidents : "may_cause"
prevention_checklist ||--o{ failure_incidents : "created_from"
grounding_checks {
int id PK
int window_id FK
string agent_id FK
string intended_action
string verification_type
string verification_result
string proceed_decision
}
failure_incidents {
int id PK
int window_id FK
string agent_id FK
string archetype
string severity
string error_description
int grounding_bypassed
}
recovery_attempts {
int id PK
int failure_id FK
int attempt_number
string strategy
string outcome
string lesson_learned
}
context_markers {
int id PK
int window_id FK
string marker_type
string distractor_risk
int contains_similar_names
}
prevention_checklist {
int id PK
string archetype
string action_category
string check_description
int times_applied
int times_prevented_failure
}
| Archetype | Prevention | Detection |
|---|---|---|
| Premature Action | sqlite_get_schema BEFORE query |
Edit without prior read |
| Over-Helpful | Return 0 for missing, don't substitute | "instead of" in reasoning |
| Context Pollution | Curate aggressively, exact name match | Similar entity confusion |
| Fragile Execution | Checkpoint every 3 actions, no inlining | Repeated similar errors |
15 models including:
Account- Imported accounts from browsersSubscription- Recurring paymentsGitHubIntegration- OAuth apps, SSH keysAIUsage- AI usage trackingKnowledgeNode/KnowledgeLink- Graph visualizationSocialAccount,CloudStorage,FinancialAccount
-- Core tables
agents -- Agent registry
activity_windows -- Session tracking
action_log -- Sequential action log
context_snapshots-- Periodic state captures
handoffs -- Multi-agent coordination
-- Failure tracking tables
grounding_checks -- Pre-action verification
failure_incidents -- Classified failures
recovery_attempts -- Recovery tracking
context_markers -- Context pollution risk
prevention_checklist -- Learned preventionip_mappings -- domain → IP → ASN mappings
asns -- ASN details with org names
prefix_mappings -- IP prefixes per ASN
blocklist -- Blocked ASNs/IPsrequests -- HTTP request log
cookies -- Cookie traffic
fingerprints -- Rotation history
tracking_domains -- Known trackers
whitelist -- Trusted domains- Node.js 20+
- Python 3.12+
- Windows 10/11
- PowerShell 7+
# Clone and install
git clone https://github.com/SoMaCoSF/aegis.git
cd aegis
npm install
# Generate Prisma client
npm run db:generate
# Push database schema
npm run db:push
# Start dashboard
npm run dashboard| Service | URL |
|---|---|
| Dashboard | http://localhost:4242 |
| API | http://localhost:4243 |
| Proxy | 127.0.0.1:8080 |
GET /api/health - Service health check
GET /api/status - Full system status
GET /api/dashboard/stats - Dashboard statistics
GET /api/dmbt/stats - Statistics
GET /api/dmbt/ips - IP mappings
GET /api/dmbt/asns - ASN list
GET /api/dmbt/prefixes - Prefix mappings
GET /api/dmbt/blocklist - Blocklist entries
POST /api/dmbt/blocklist - Add to blocklist
GET /api/ghost/stats - Statistics
GET /api/ghost/domains - Tracking domains
GET /api/ghost/cookies - Cookie traffic
GET /api/ghost/fingerprints - Fingerprints
GET /api/ghost/requests - Request log
POST /api/ghost/whitelist - Add to whitelist
GET /api/accounts - All accounts
GET /api/subscriptions - Subscriptions
GET /api/github/integrations - GitHub integrations
POST /api/github/scan - Trigger audit
| Layer | Technology |
|---|---|
| Frontend | React 18, Vite, Tailwind CSS, Three.js |
| Backend | Express, Prisma, better-sqlite3 |
| Database | SQLite (5 databases) |
| Network | Go (DMBT agent), Python (collectors) |
| Proxy | mitmproxy, Python |
| Telemetry | OpenTelemetry |
- GitHub: github.com/SoMaCoSF/aegis
- Issues: Report bugs
AEGIS Privacy Suite - Because your digital life shouldn't be a mystery.
Built with Claude Code