Created
November 23, 2020 21:34
-
-
Save Soccolo/2c0a532fe05ffbc9c991e0e84f167105 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import algebra | |
import algebra.gcd_domain | |
import tactic | |
import data.nat.gcd | |
import data.int.gcd | |
-- Let G be a group. Prove that, if there exist m and n coprime such that (xy)^m=(yx)^m | |
-- and (xy)^n=(yx)^n, then G is commutative. | |
variables [G : Type] [group G] | |
variables (m n : ℕ) | |
lemma gcd_domain_integers: gcd_domain ℤ := | |
begin | |
exact int.gcd_domain, | |
end | |
theorem Bezout_for_one (hmn: nat.gcd m n = 1): ∃ a b : ℤ, a * m + b * n = (1:ℕ):= | |
begin | |
use m.gcd_a n, | |
use m.gcd_b n, | |
rw ← hmn, | |
have fact: m.gcd_a n * m = m * m.gcd_a n, | |
{ | |
ring, | |
}, | |
rw fact, | |
have fact': m.gcd_b n * n = n * m.gcd_b n, | |
{ | |
ring, | |
}, | |
rw fact', | |
rw eq_comm, | |
exact nat.gcd_eq_gcd_ab m n, | |
end | |
theorem AMC_problem (hmn: nat.gcd m n = 1) (hxym: ∀ x y : G, (x*y)^m=(y*x)^m) (hxyn: ∀ x y : G, (x * y)^n = (y * x)^n): | |
∀ x y : G, x * y = y * x:= | |
begin | |
intros x y, | |
specialize hxym x y, | |
specialize hxyn x y, | |
have fact1: ∃ a b : ℤ, a * m + b * n = (1:ℕ), | |
{ | |
exact Bezout_for_one m n hmn, | |
}, | |
cases fact1 with a hab, | |
cases hab with b hab, | |
have factm: ∀ a : ℤ, (x * y)^(a * m) = (y * x)^(a * m), | |
{ | |
intro a, | |
calc (x*y)^(a * ↑m)=(x*y)^(↑m * a): congr_arg (pow (x * y)) (mul_comm a m) | |
...=((x*y)^m)^a: by exact gpow_mul (x*y) m a | |
...=((y*x)^m)^a: congr_fun (congr_arg pow hxym) a | |
...=(y*x)^(↑m * a): by exact eq.symm (gpow_mul (y*x) m a) | |
...=(y*x)^(a * m): congr_arg (pow (y * x)) (eq.symm (mul_comm a m)), | |
}, | |
have factn: ∀ b : ℤ, (x*y) ^ (b*n) = (y * x) ^ (b * n), | |
{ | |
intro b, | |
calc (x * y)^(b * ↑n) = (x * y)^(↑n * b): congr_arg (pow (x*y)) (mul_comm b n) | |
...=((x*y)^n)^b: by exact gpow_mul (x*y) n b | |
...=((y*x)^n)^b: congr_fun (congr_arg pow hxyn) b | |
...=(y*x)^(↑n * b): by exact eq.symm(gpow_mul (y*x) n b) | |
...=(y * x)^(b * ↑n): congr_arg (pow (y*x)) (eq.symm (mul_comm b n)), | |
}, | |
specialize factm a, | |
specialize factn b, | |
have factmn: (x*y)^(a*m+b*n)=(y*x)^(a*m+b*n), | |
{ | |
calc (x*y)^(a*m+b*n)=(x*y)^(a*m) * (x*y)^(b*n): gpow_add (x * y) (a * ↑m) (b * ↑n) | |
...= (y*x)^(a*m) * (x * y)^(b*n): congr_fun (congr_arg has_mul.mul factm) ((x * y) ^ (b * ↑n)) | |
...= (y*x)^(a*m) * (y*x)^(b*n): congr_arg (has_mul.mul ((y * x) ^ (a * ↑m))) factn | |
...= (y*x)^(a*m+b*n): (gpow_add (y * x) (a * ↑m) (b * ↑n)).symm, | |
}, | |
rw hab at factmn, | |
rw ← gpow_one (x*y), | |
rw ← gpow_one (y*x), | |
exact factmn, | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment