Created
July 17, 2019 17:39
-
-
Save SohierDane/a90ef46d79808fe3afc70c80bae45972 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Python equivalent of the Kuzushiji competition metric (https://www.kaggle.com/c/kuzushiji-recognition/) | |
Kaggle's backend uses a C# implementation of the same metric. This version is | |
provided for convenience only; in the event of any discrepancies the C# implementation | |
is the master version. | |
Tested on Python 3.6 with numpy 1.16.4 and pandas 0.24.2. | |
""" | |
import argparse | |
import multiprocessing | |
import numpy as np | |
import pandas as pd | |
def define_console_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--sub_path', type=str) | |
parser.add_argument('--solution_path', type=str) | |
return parser | |
def score_page(preds, truth): | |
""" | |
Scores a single page. | |
Args: | |
preds: prediction string of labels and center points. | |
truth: ground truth string of labels and bounding boxes. | |
Returns: | |
True/false positive and false negative counts for the page | |
""" | |
tp = 0 | |
fp = 0 | |
fn = 0 | |
truth_indices = { | |
'label': 0, | |
'X': 1, | |
'Y': 2, | |
'Width': 3, | |
'Height': 4 | |
} | |
preds_indices = { | |
'label': 0, | |
'X': 1, | |
'Y': 2 | |
} | |
if pd.isna(truth) and pd.isna(preds): | |
return {'tp': tp, 'fp': fp, 'fn': fn} | |
if pd.isna(truth): | |
fp += len(preds.split(' ')) // len(preds_indices) | |
return {'tp': tp, 'fp': fp, 'fn': fn} | |
if pd.isna(preds): | |
fn += len(truth.split(' ')) // len(truth_indices) | |
return {'tp': tp, 'fp': fp, 'fn': fn} | |
truth = truth.split(' ') | |
if len(truth) % len(truth_indices) != 0: | |
raise ValueError('Malformed solution string') | |
truth_label = np.array(truth[truth_indices['label']::len(truth_indices)]) | |
truth_xmin = np.array(truth[truth_indices['X']::len(truth_indices)]).astype(float) | |
truth_ymin = np.array(truth[truth_indices['Y']::len(truth_indices)]).astype(float) | |
truth_xmax = truth_xmin + np.array(truth[truth_indices['Width']::len(truth_indices)]).astype(float) | |
truth_ymax = truth_ymin + np.array(truth[truth_indices['Height']::len(truth_indices)]).astype(float) | |
preds = preds.split(' ') | |
if len(preds) % len(preds_indices) != 0: | |
raise ValueError('Malformed prediction string') | |
preds_label = np.array(preds[preds_indices['label']::len(preds_indices)]) | |
preds_x = np.array(preds[preds_indices['X']::len(preds_indices)]).astype(float) | |
preds_y = np.array(preds[preds_indices['Y']::len(preds_indices)]).astype(float) | |
preds_unused = np.ones(len(preds_label)).astype(bool) | |
for xmin, xmax, ymin, ymax, label in zip(truth_xmin, truth_xmax, truth_ymin, truth_ymax, truth_label): | |
# Matching = point inside box & character same & prediction not already used | |
matching = (xmin < preds_x) & (xmax > preds_x) & (ymin < preds_y) & (ymax > preds_y) & (preds_label == label) & preds_unused | |
if matching.sum() == 0: | |
fn += 1 | |
else: | |
tp += 1 | |
preds_unused[np.argmax(matching)] = False | |
fp += preds_unused.sum() | |
return {'tp': tp, 'fp': fp, 'fn': fn} | |
def kuzushiji_f1(sub, solution): | |
""" | |
Calculates the competition metric. | |
Args: | |
sub: submissions, as a Pandas dataframe | |
solution: solution, as a Pandas dataframe | |
Returns: | |
f1 score | |
""" | |
if not all(sub['image_id'].values == solution['image_id'].values): | |
raise ValueError("Submission image id codes don't match solution") | |
pool = multiprocessing.Pool() | |
results = pool.starmap(score_page, zip(sub['labels'].values, solution['labels'].values)) | |
pool.close() | |
pool.join() | |
tp = sum([x['tp'] for x in results]) | |
fp = sum([x['fp'] for x in results]) | |
fn = sum([x['fn'] for x in results]) | |
if (tp + fp) == 0 or (tp + fn) == 0: | |
return 0 | |
precision = tp / (tp + fp) | |
recall = tp / (tp + fn) | |
if precision > 0 and recall > 0: | |
f1 = (2 * precision * recall) / (precision + recall) | |
else: | |
f1 = 0 | |
return f1 | |
if __name__ == '__main__': | |
parser = define_console_parser() | |
shell_args = parser.parse_args() | |
sub = pd.read_csv(shell_args.sub_path) | |
solution = pd.read_csv(shell_args.solution_path) | |
sub = sub.rename(columns={'rowId': 'image_id', 'PredictionString': 'labels'}) | |
solution = solution.rename(columns={'rowId': 'image_id', 'PredictionString': 'labels'}) | |
score = kuzushiji_f1(sub, solution) | |
print('F1 score of: {0}'.format(score)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment