Last active
May 20, 2021 09:50
-
-
Save SolomidHero/c99cbb031b2f152ccd87a51e09807745 to your computer and use it in GitHub Desktop.
PatchGAN - Discriminator for frequency features
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Least Squares GAN loss | |
def adversarial_loss(scores, as_real=True): | |
if as_real: | |
return torch.mean((1 - scores) ** 2) | |
return torch.mean(scores ** 2) | |
def discriminator_loss(fake_scores, real_scores): | |
loss = adversarial_loss(fake_scores, as_real=False) + adversarial_loss(real_scores, as_real=True) | |
return loss | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# PatchGAN | |
# ref: https://github.com/jackaduma/CycleGAN-VC2/blob/master/model_tf.py | |
import torch.nn as nn | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.inputConvLayer = nn.Sequential( | |
nn.Conv2d(in_channels=1, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), | |
nn.SiLU() | |
) | |
# DownSample Layer | |
self.down1 = self.downSample(in_channels=128, out_channels=256, kernel_size=(3, 3), stride=(2, 2), padding=1) | |
self.down2 = self.downSample(in_channels=256, out_channels=512, kernel_size=(3, 3), stride=(2, 2), padding=1) | |
self.down3 = self.downSample(in_channels=512, out_channels=1024, kernel_size=(3, 3), stride=(2, 2), padding=1) | |
# self.down4 = self.downSample(in_channels=1024, out_channels=1024, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2)) | |
# Conv Layer | |
self.outputConvLayer = nn.Conv2d(in_channels=1024, out_channels=1, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1)) | |
def downSample(self, in_channels, out_channels, kernel_size, stride, padding): | |
return nn.Sequential( | |
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding), | |
nn.InstanceNorm2d(num_features=out_channels, affine=True), | |
nn.SiLU() | |
) | |
def forward(self, input): | |
# input has shape (batch_size, num_features, time) | |
# discriminator requires shape (batchSize, 1, num_features, time) | |
x = self.inputConvLayer(input.unsqueeze(1)) | |
x = self.down1(x) | |
x = self.down2(x) | |
x = self.down3(x) | |
# x = self.down4(x) | |
output = self.outputConvLayer(x) | |
return output | |
# Discriminator Dimensionality Testing | |
input = torch.randn(32, 80, 1337) # (N, C_in, T_in) For Conv2d | |
discriminator = Discriminator() | |
output = discriminator(input) | |
print("Discriminator output shape ", output.shape) # (N, 1, C_out, T_out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment