Skip to content

Instantly share code, notes, and snippets.

@Soumi7
Created May 1, 2020 12:21
Show Gist options
  • Save Soumi7/fb8b477dd3694a89a24d45f00e093dec to your computer and use it in GitHub Desktop.
Save Soumi7/fb8b477dd3694a89a24d45f00e093dec to your computer and use it in GitHub Desktop.
from importlib import import_module
import os
import jsonpickle
from flask import Flask,Response , request , flash , url_for,jsonify
import logging
from logging.config import dictConfig
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from flask import Flask
from tensorflow.keras.preprocessing import image
import numpy as np
import h5py
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
app = Flask(__name__)
@app.route('/')
def hello_world():
return "This API is running perfectly!"
@app.route('/classifier/run',methods=['POST'])
def classify():
app.logger.debug('Running classifier')
upload = request.files['data']
image = load_image(upload)
model = load_model('best1.h5')
result=model.predict_classes(image)
predicted_class = ("bridge", "child","tristep1","tristep2","tristep3")[result[0]]
return(predicted_class)
def load_image(filename):
IMG_SIZE=224
test_image = image.load_img(filename, target_size = (IMG_SIZE, IMG_SIZE))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
return test_image
if __name__ == '__main__':
#load_model() # load model at the beginning once only
app.run(host='0.0.0.0', port=80)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment