Remember the good old 90's, when morphing was the coolest thing ever?
Well, I finally figured out how to do it myself!
A Pen by Andreas Borgen on CodePen.
Remember the good old 90's, when morphing was the coolest thing ever?
Well, I finally figured out how to do it myself!
A Pen by Andreas Borgen on CodePen.
<script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.3/vue.js"></script> | |
<script src="https://unpkg.com/delaunay-fast@1"></script> | |
<script src="https://unpkg.com/[email protected]"></script> | |
<script src="https://unpkg.com/drag-tracker@1"></script> | |
<h1>HyperMorph 3000™</h1> | |
<svg width="0" height="0" style="position:absolute;"> | |
<defs> | |
<radialGradient id="point-grad"> | |
<stop offset="80%" stop-color="transparent"/> | |
<stop offset="81%" stop-color="white"/> | |
</radialGradient> | |
</defs> | |
</svg> | |
<section id="app"> | |
<div id="prepare" class="group"> | |
<button @click="clear">Clear</button> | |
<div id="image1" class="image-container"> | |
<div class="draw-area" :style="sizer()"> | |
<canvas class="img"></canvas> | |
<triangulator :model="state.tri1" :selected-index="state.selectedIndex" | |
@added="onAdded" @selected="onSelected" @deleted="onDeleted"></triangulator> | |
</div> | |
<label> | |
<input type="file" accept="image/*"> | |
<span>Change image</span> | |
</label> | |
</div> | |
<div id="image2" class="image-container"> | |
<div class="draw-area" :style="sizer()"> | |
<canvas class="img"></canvas> | |
<triangulator :model="state.tri2" :selected-index="state.selectedIndex" | |
@added="onAdded" @selected="onSelected" @deleted="onDeleted"></triangulator> | |
</div> | |
<label> | |
<input type="file" accept="image/*"> | |
<span>Change image</span> | |
</label> | |
</div> | |
</div> | |
<div id="apply" class="group"> | |
<button @click="warp">Morph</button> | |
<div id="morph"> | |
<canvas id="c1" :width="state.size.w" :height="state.size.h"></canvas> | |
<canvas id="c2" :width="state.size.w" :height="state.size.h"></canvas> | |
</div> | |
</div> | |
<!----> | |
<pre>{{ state | prettyCompact }}</pre> | |
</section> | |
<footer> | |
Dog/cat image: © A Dogs Life Photography<br/> | |
From <a href="https://www.sdjgjx.com/up/pc/cat%20and%20dog.jpg">sdjgjx.com</a> | |
</footer> | |
<!-- SVG UI --> | |
<script> | |
Vue.component('drag-node', { | |
template: '<circle data-draggable @dragging="onDragging" :cx="absCoord[0]" :cy="absCoord[1]" :r="r" />', | |
props: { | |
r: { default: 16 }, | |
coord: Array, | |
//If 'coord' is relative to some other point: | |
offsetCenter: Array, | |
}, | |
model: { | |
prop: 'coord', | |
event: 'do_it', | |
}, | |
computed: { | |
absCoord() { | |
const point = this.coord, | |
center = this.offsetCenter, | |
absCoord = center ? [ point[0] + center[0], point[1] + center[1] ] | |
: point; | |
return absCoord; | |
}, | |
}, | |
methods: { | |
onDragging(e) { | |
const point = e.detail.pos, | |
center = this.offsetCenter, | |
relCoord = center ? [ point[0] - center[0], point[1] - center[1] ] | |
: point; | |
this.$emit('do_it', relCoord); | |
}, | |
}, | |
}); | |
Vue.component('connector', { | |
template: '<line class="connector" :x1="start[0]" :y1="start[1]" :x2="absEnd[0]" :y2="absEnd[1]" />', | |
props: ['start', 'end', 'endIsRel'], | |
computed: { | |
absEnd() { | |
const start = this.start, | |
end = this.end, | |
absEnd = this.endIsRel ? [ start[0] + end[0], start[1] + end[1] ] | |
: end; | |
return absEnd; | |
} | |
} | |
}); | |
</script> |
/** | |
* Uses Delaunay triangulation to divide a rectangle into triangles. | |
*/ | |
class Triangulator { | |
constructor(size, points) { | |
this.size = size; | |
this.points = points || []; | |
} | |
getEffectivePoints() { | |
const { w, h } = this.size, | |
corners = [ | |
Triangulator.createPoint([0,0]), | |
Triangulator.createPoint([w,0]), | |
Triangulator.createPoint([0,h]), | |
Triangulator.createPoint([w,h]), | |
]; | |
return corners.concat(this.points.filter(p => !p.toDelete)); | |
} | |
getTriangles(indexes) { | |
const coords = this.getEffectivePoints().map(p => p.coord), | |
triangles = Delaunay.triangulate(coords), | |
trisList = []; | |
//"...it will return you a giant array, arranged in triplets, | |
// representing triangles by indices into the passed array." | |
let a, b, c; | |
for(let i = 0; i < triangles.length; i += 3) { | |
a = triangles[i]; | |
b = triangles[i+1]; | |
c = triangles[i+2]; | |
trisList.push( indexes ? [a, b, c] : [coords[a], coords[b], coords[c]] ); | |
} | |
return trisList; | |
} | |
getEdges() { | |
const drawn = {}, | |
edges = []; | |
function addIfNew(p1, p2) { | |
var key = (p1 < p2) ? (p1 + '_' + p2) : (p2 + '_' + p1); | |
if(drawn[key]) { return; } | |
drawn[key] = true; | |
edges.push([p1, p2]); | |
} | |
this.getTriangles().forEach(t => { | |
addIfNew(t[0], t[1]); | |
addIfNew(t[1], t[2]); | |
addIfNew(t[2], t[0]); | |
}); | |
return edges; | |
} | |
addPoint(coord) { | |
this.points.push(Triangulator.createPoint(coord)); | |
} | |
static createPoint(coord) { | |
return { | |
coord: coord.map(Math.round), | |
//toDelete: false, | |
} | |
} | |
} | |
/** | |
* Renders an image on a canvas, within a maximum bounding box. | |
*/ | |
class ImageRenderer { | |
constructor(canvas, onImgLoad) { | |
this.canvas = canvas; | |
const img = this.image = new Image(); | |
img.addEventListener('load', e => { | |
const w = img.naturalWidth, | |
h = img.naturalHeight, | |
aspect = w/h; | |
this.info = { | |
width: w, | |
height: h, | |
aspect, | |
}; | |
onImgLoad(this); | |
}, false); | |
} | |
setSrc(src) { | |
this.image.src = src; | |
} | |
clampSize(maxW, maxH) { | |
const info = this.info; | |
if(!info) { throw new Error(`No size info yet (${this.image.src})`); } | |
const w = info.width, | |
h = info.height, | |
shrinkageW = maxW / w, | |
shrinkageH = maxH / h, | |
shrinkage = Math.min(shrinkageW, shrinkageH), | |
clamped = (shrinkage < 1) ? [w * shrinkage, h * shrinkage] : [w, h]; | |
return clamped; | |
} | |
render(canvSize) { | |
const canvas = this.canvas; | |
if(canvSize) { | |
canvas.width = canvSize[0]; | |
canvas.height = canvSize[1]; | |
} | |
const w = canvas.width, | |
h = canvas.height, | |
[imgW, imgH] = this.clampSize(w, h), | |
padW = (w - imgW) / 2, | |
padH = (h - imgH) / 2; | |
const ctx = canvas.getContext('2d'); | |
ctx.drawImage(this.image, padW, padH, imgW, imgH); | |
} | |
} | |
/** | |
* Draws a warped image on a canvas by comparing a normal and a warped triangulation. | |
*/ | |
function warpImage(img, triSource, triTarget, canvas, lerpT) { | |
const um = ABOUtils.Math, | |
uc = ABOUtils.Canvas, | |
ug = ABOUtils.Geom; | |
function drawTriangle(s1, s2, s3, d1, d2, d3) { | |
//TODO: Expand dest ~.5, and source similarly based on area difference.. | |
//Overlap the destination areas a little | |
//to avoid hairline cracks when drawing mulitiple connected triangles. | |
const [d1x, d2x, d3x] = [d1, d2, d3], //ug.expandTriangle(d1, d2, d3, .3), | |
[s1x, s2x, s3x] = [s1, s2, s3]; //ug.expandTriangle(s1, s2, s3, .3); | |
uc.drawImageTriangle(img, ctx, | |
s1x, s2x, s3x, | |
d1x, d2x, d3x, true); | |
} | |
const { w, h } = triTarget.size, | |
ctx = canvas.getContext('2d'), | |
tri1 = triSource.getTriangles(true), | |
tri2 = triTarget.getTriangles(true), | |
co1 = triSource.getEffectivePoints().map(p => p.coord); | |
let co2 = triTarget.getEffectivePoints().map(p => p.coord); | |
if(lerpT || (lerpT === 0)) { | |
co2 = um.lerp(co1, co2, lerpT); | |
} | |
ctx.clearRect(0,0, w,h); | |
tri1.forEach((t1, i) => { | |
const corners1 = t1.map(i => co1[i]), | |
corners2 = t1.map(i => co2[i]); | |
drawTriangle(corners1[0], corners1[1], corners1[2], | |
corners2[0], corners2[1], corners2[2]); | |
}); | |
} | |
(function() { | |
"use strict"; | |
console.clear(); | |
const um = ABOUtils.Math, | |
ud = ABOUtils.DOM, | |
[$, $$] = ud.selectors(); | |
let _loader1, _loader2; | |
const _srcA = '', | |
_srcB = '', | |
_size = { | |
w: 400, | |
h: 400, | |
}, | |
_maxSize = 500, | |
//Global state model. Can be changed from within Vue or from the outside. | |
_state = { | |
size: _size, | |
tri1: new Triangulator(_size, [{"coord":[53,77]},{"coord":[106,35]},{"coord":[152,38]},{"coord":[238,56]},{"coord":[282,67]},{"coord":[312,123]},{"coord":[271,122]},{"coord":[251,155]},{"coord":[211,276]},{"coord":[216,318]},{"coord":[191,403]},{"coord":[153,459]},{"coord":[92,90]},{"coord":[101,117]},{"coord":[78,211]},{"coord":[56,222]},{"coord":[0,302]},{"coord":[143,95]},{"coord":[229,111]},{"coord":[175,169]},{"coord":[115,158]},{"coord":[118,212]},{"coord":[207,225]},{"coord":[229,177]},{"coord":[59,113]},{"coord":[287,157]},{"coord":[87,153]},{"coord":[247,188]},{"coord":[86,247]},{"coord":[177,324]},{"coord":[122,384]},{"coord":[80,459]},{"coord":[139,110]},{"coord":[228,125]}]), | |
tri2: new Triangulator(_size, [{"coord":[99,13]},{"coord":[129,35]},{"coord":[156,69]},{"coord":[222,73]},{"coord":[261,33]},{"coord":[287,31]},{"coord":[274,107]},{"coord":[264,146]},{"coord":[182,263]},{"coord":[180,306]},{"coord":[120,385]},{"coord":[68,459]},{"coord":[99,87]},{"coord":[98,119]},{"coord":[78,135]},{"coord":[44,142]},{"coord":[0,150]},{"coord":[150,127]},{"coord":[211,131]},{"coord":[175,169]},{"coord":[135,167]},{"coord":[136,195]},{"coord":[210,200]},{"coord":[220,171]},{"coord":[91,37]},{"coord":[288,64]},{"coord":[91,126]},{"coord":[246,188]},{"coord":[97,181]},{"coord":[150,248]},{"coord":[94,307]},{"coord":[51,459]},{"coord":[135,137]},{"coord":[223,142]}]), | |
selectedIndex: -1, | |
}; | |
Vue.component('triangulator', { | |
template: ` | |
<svg :width="size.w" :height="size.h" @click="addPoint"> | |
<g class="edges"> | |
<connector class="edge" v-for="(e, i) in edges" :start="e[0]" :end="e[1]"></connector> | |
</g> | |
<g class="nodes"> | |
<drag-node class="point" v-for="(p, i) in points" v-model="p.coord" :class="{ selected: (i === selectedIndex) }" :r="10" :data-index="i"></drag-node> | |
</g> | |
</svg>`, | |
props: ['model', 'selectedIndex'], | |
computed: { | |
size() { return this.model.size; }, | |
points() { return this.model.points; }, | |
edges() { return this.model.getEdges(); }, | |
}, | |
mounted() { | |
const that = this, | |
svg = this.$el, | |
deleteThreshold = 20; | |
function findPointIndex(node) { | |
const index = parseInt(node.dataset.index); | |
return index; | |
} | |
dragTracker({ | |
container: svg, | |
selector: '[data-draggable]', | |
propagateEvents: true, | |
//dragOutside: false, | |
callback: (node, pos) => { | |
const x = pos[0], | |
y = pos[1], | |
point = that.points[findPointIndex(node)]; | |
let normPos; | |
//Drag a point above the canvas to delete: | |
if(y < -deleteThreshold) { | |
point.toDelete = true; | |
normPos = pos; | |
} | |
else { | |
const w = that.size.w, | |
h = that.size.h; | |
normPos = [um.clamp(x, 0, w), um.clamp(y, 0, h)]; | |
} | |
//const event = new CustomEvent('dragging', { detail: { pos: nodePos } }); | |
const event = document.createEvent('CustomEvent'); | |
event.initCustomEvent('dragging', true, false, { pos: normPos } ); | |
node.dispatchEvent(event); | |
}, | |
callbackDragStart: (node, pos) => { | |
that.select(findPointIndex(node)); | |
}, | |
callbackDragEnd: (node, pos) => { | |
const point = that.points[findPointIndex(node)]; | |
if(point.toDelete) { | |
that.deletePoint(findPointIndex(node)) | |
} | |
}, | |
}); | |
}, | |
methods: { | |
addPoint(e) { | |
const svg = e.currentTarget; | |
if(e.target !== svg) { return; } | |
const coord = ud.relativeMousePos(e, svg); | |
this.model.addPoint(coord); | |
this.$emit('added'); | |
this.select(this.model.points.length - 1); | |
}, | |
select(index) { | |
this.$emit('selected', index); | |
}, | |
deletePoint(index) { | |
this.$emit('deleted', index); | |
}, | |
}, | |
}); | |
new Vue({ | |
el: '#app', | |
data: { | |
state: _state, | |
morphAnim: null, | |
}, | |
mounted() { | |
console.log('main mounted'); | |
//Handle rendering of the "before" and "after" images. | |
function onLoad(loader) { | |
const info1 = _loader1.info, | |
info2 = _loader2.info; | |
//Once we have two images loaded, render both with the same size: | |
let size; | |
if(info1 && info2) { | |
size = _loader1.clampSize(_maxSize, _maxSize); | |
_loader1.render(size); | |
_loader2.render(size); | |
} | |
//Render the very first image while we wait for a second one: | |
else { | |
size = loader.clampSize(_maxSize, _maxSize); | |
loader.render(size); | |
} | |
_size.w = size[0]; | |
_size.h = size[1]; | |
} | |
[_loader1, _loader2] = $$('.image-container').map(container => { | |
const canvas = $('.img', container), | |
input = $('input', container), | |
loader = new ImageRenderer(canvas, onLoad); | |
const onChange = (file) => { | |
loader.setSrc(file.url); | |
this.stopAnim(); | |
} | |
ud.dropImage(container, onChange); | |
ud.dropImage(input, onChange); | |
return loader; | |
}); | |
_loader1.setSrc(_srcA); | |
_loader2.setSrc(_srcB); | |
}, | |
methods: { | |
sizer() { | |
const obj = { | |
width: _size.w + 'px', | |
height: _size.h + 'px', | |
}; | |
return obj; | |
}, | |
clear() { | |
this.state.tri1.points = []; | |
this.state.tri2.points = []; | |
}, | |
stopAnim() { | |
if(this.morphAnim) { this.morphAnim.cancel(); } | |
}, | |
warp() { | |
const c1 = $('#c1'), | |
c2 = $('#c2'); | |
let skip = false; | |
function frame(t) { | |
//30fps is more than enough: | |
skip = !skip; | |
if(skip) { return; } | |
warpImage(_loader1.canvas, _state.tri1, _state.tri2, c1, t); | |
warpImage(_loader2.canvas, _state.tri2, _state.tri1, c2, (1-t)); | |
c2.style.opacity = t; | |
} | |
this.stopAnim(); | |
this.morphAnim = ud.animate(3000, frame, true); | |
}, | |
//Sync added, selected and deleted points between the two lists: | |
onAdded() { | |
const a = this.state.tri1, | |
b = this.state.tri2, | |
[source, target] = (a.points.length > b.points.length) ? [a, b] : [b, a], | |
[sourcePoints, targetPoints] = [source.points, target.points]; | |
while(targetPoints.length < sourcePoints.length) { | |
target.addPoint(sourcePoints[targetPoints.length].coord); | |
} | |
}, | |
onSelected(index) { | |
this.stopAnim(); | |
this.state.selectedIndex = index; | |
}, | |
onDeleted(index) { | |
this.$delete(this.state.tri1.points, index); | |
this.$delete(this.state.tri2.points, index); | |
}, | |
}, | |
filters: { | |
prettyCompact: function(obj) { | |
return 'tri1: new Triangulator(_size, ' + JSON.stringify(obj.tri1.points) + '),\n' + | |
'tri2: new Triangulator(_size, ' + JSON.stringify(obj.tri2.points) + '),\n\n'; | |
if(!obj) return ''; | |
const pretty = JSON.stringify(obj, null, 2), | |
//Collapse simple arrays (arrays without objects or nested arrays) to one line: | |
compact = pretty.replace(/\[[^[{]*?]/g, (match => match.replace(/\s+/g, ' '))) | |
return compact; | |
} | |
}, | |
}); | |
})(); |
body { | |
//display: flex; | |
//justify-content: space-around; | |
//align-items: flex-start; | |
margin: 0; | |
font-family: Georgia, sans-serif; | |
background: #222; | |
//background-image: url('http://a1star.com/images/starsglow1.gif'); | |
h1 { | |
margin: 1em 0;; | |
text-align: center; | |
color: white; | |
} | |
button { | |
padding: 1em; | |
font: inherit; | |
} | |
footer { | |
padding: 2em 1em; | |
background: darkorange; | |
color: maroon; | |
} | |
} | |
#app { | |
//display: flex; | |
//flex-flow: row wrap; | |
//align-items: flex-start; | |
text-align: center; | |
//margin: 1em; | |
padding: .5em 0; | |
background: gainsboro; | |
.group { | |
display: inline-block; | |
vertical-align: top; | |
margin: .5em .8em; | |
button { | |
display: block; | |
margin: auto; | |
margin-bottom: .5em; | |
} | |
} | |
.image-container { | |
position: relative; | |
display: inline-block; | |
background: white; | |
.draw-area { | |
text-align: left; | |
overflow: hidden; | |
} | |
input { | |
//This also disables keyboard navigation.. | |
// display: none; | |
position: absolute; | |
z-index: -1; | |
opacity: 0; | |
width: 0; | |
+ span { | |
position: relative; | |
display: block; | |
padding: .5em; | |
box-sizing: border-box; | |
background: purple; | |
color: white; | |
cursor: pointer; | |
} | |
&:focus + span, | |
&:active + span, | |
+ span:hover { | |
background: darkviolet; | |
outline: 2px solid violet; | |
} | |
} | |
} | |
#morph { | |
position: relative; | |
display: table; | |
canvas { | |
background: white; | |
+ canvas { | |
position: absolute; | |
top:0; left:0; | |
} | |
} | |
} | |
svg { | |
position: absolute; | |
top:0; left:0; | |
.connector { | |
stroke: rgba(dodgerblue, .5); | |
stroke-width: 1; | |
stroke-dasharray: 2; | |
pointer-events: none; | |
} | |
[data-draggable] { | |
stroke: black; | |
fill: rgba(white, .2); | |
fill: url(#point-grad); | |
cursor: move; | |
&.selected { | |
fill: rgba(yellow, .5); | |
} | |
} | |
} | |
pre { | |
flex: 1 1 auto; | |
margin: .5em 1em; | |
background: white; | |
color: #888; | |
border: 1px solid gainsboro; | |
overflow: auto; | |
} | |
} |