Skip to content

Instantly share code, notes, and snippets.

@Sphinxxxx
Last active December 6, 2024 09:40
Show Gist options
  • Save Sphinxxxx/73da73b5ecfa361f593c4d9078bbeea7 to your computer and use it in GitHub Desktop.
Save Sphinxxxx/73da73b5ecfa361f593c4d9078bbeea7 to your computer and use it in GitHub Desktop.
HyperMorph 3000™

HyperMorph 3000™

Remember the good old 90's, when morphing was the coolest thing ever?

Well, I finally figured out how to do it myself!

A Pen by Andreas Borgen on CodePen.

License.

<script src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.5.3/vue.js"></script>
<script src="https://unpkg.com/delaunay-fast@1"></script>
<script src="https://unpkg.com/[email protected]"></script>
<script src="https://unpkg.com/drag-tracker@1"></script>
<h1>HyperMorph 3000™</h1>
<svg width="0" height="0" style="position:absolute;">
<defs>
<radialGradient id="point-grad">
<stop offset="80%" stop-color="transparent"/>
<stop offset="81%" stop-color="white"/>
</radialGradient>
</defs>
</svg>
<section id="app">
<div id="prepare" class="group">
<button @click="clear">Clear</button>
<div id="image1" class="image-container">
<div class="draw-area" :style="sizer()">
<canvas class="img"></canvas>
<triangulator :model="state.tri1" :selected-index="state.selectedIndex"
@added="onAdded" @selected="onSelected" @deleted="onDeleted"></triangulator>
</div>
<label>
<input type="file" accept="image/*">
<span>Change image</span>
</label>
</div>
<div id="image2" class="image-container">
<div class="draw-area" :style="sizer()">
<canvas class="img"></canvas>
<triangulator :model="state.tri2" :selected-index="state.selectedIndex"
@added="onAdded" @selected="onSelected" @deleted="onDeleted"></triangulator>
</div>
<label>
<input type="file" accept="image/*">
<span>Change image</span>
</label>
</div>
</div>
<div id="apply" class="group">
<button @click="warp">Morph</button>
<div id="morph">
<canvas id="c1" :width="state.size.w" :height="state.size.h"></canvas>
<canvas id="c2" :width="state.size.w" :height="state.size.h"></canvas>
</div>
</div>
<!---->
<pre>{{ state | prettyCompact }}</pre>
</section>
<footer>
Dog/cat image: © A Dogs Life Photography<br/>
From <a href="https://www.sdjgjx.com/up/pc/cat%20and%20dog.jpg">sdjgjx.com</a>
</footer>
<!-- SVG UI -->
<script>
Vue.component('drag-node', {
template: '<circle data-draggable @dragging="onDragging" :cx="absCoord[0]" :cy="absCoord[1]" :r="r" />',
props: {
r: { default: 16 },
coord: Array,
//If 'coord' is relative to some other point:
offsetCenter: Array,
},
model: {
prop: 'coord',
event: 'do_it',
},
computed: {
absCoord() {
const point = this.coord,
center = this.offsetCenter,
absCoord = center ? [ point[0] + center[0], point[1] + center[1] ]
: point;
return absCoord;
},
},
methods: {
onDragging(e) {
const point = e.detail.pos,
center = this.offsetCenter,
relCoord = center ? [ point[0] - center[0], point[1] - center[1] ]
: point;
this.$emit('do_it', relCoord);
},
},
});
Vue.component('connector', {
template: '<line class="connector" :x1="start[0]" :y1="start[1]" :x2="absEnd[0]" :y2="absEnd[1]" />',
props: ['start', 'end', 'endIsRel'],
computed: {
absEnd() {
const start = this.start,
end = this.end,
absEnd = this.endIsRel ? [ start[0] + end[0], start[1] + end[1] ]
: end;
return absEnd;
}
}
});
</script>
/**
* Uses Delaunay triangulation to divide a rectangle into triangles.
*/
class Triangulator {
constructor(size, points) {
this.size = size;
this.points = points || [];
}
getEffectivePoints() {
const { w, h } = this.size,
corners = [
Triangulator.createPoint([0,0]),
Triangulator.createPoint([w,0]),
Triangulator.createPoint([0,h]),
Triangulator.createPoint([w,h]),
];
return corners.concat(this.points.filter(p => !p.toDelete));
}
getTriangles(indexes) {
const coords = this.getEffectivePoints().map(p => p.coord),
triangles = Delaunay.triangulate(coords),
trisList = [];
//"...it will return you a giant array, arranged in triplets,
// representing triangles by indices into the passed array."
let a, b, c;
for(let i = 0; i < triangles.length; i += 3) {
a = triangles[i];
b = triangles[i+1];
c = triangles[i+2];
trisList.push( indexes ? [a, b, c] : [coords[a], coords[b], coords[c]] );
}
return trisList;
}
getEdges() {
const drawn = {},
edges = [];
function addIfNew(p1, p2) {
var key = (p1 < p2) ? (p1 + '_' + p2) : (p2 + '_' + p1);
if(drawn[key]) { return; }
drawn[key] = true;
edges.push([p1, p2]);
}
this.getTriangles().forEach(t => {
addIfNew(t[0], t[1]);
addIfNew(t[1], t[2]);
addIfNew(t[2], t[0]);
});
return edges;
}
addPoint(coord) {
this.points.push(Triangulator.createPoint(coord));
}
static createPoint(coord) {
return {
coord: coord.map(Math.round),
//toDelete: false,
}
}
}
/**
* Renders an image on a canvas, within a maximum bounding box.
*/
class ImageRenderer {
constructor(canvas, onImgLoad) {
this.canvas = canvas;
const img = this.image = new Image();
img.addEventListener('load', e => {
const w = img.naturalWidth,
h = img.naturalHeight,
aspect = w/h;
this.info = {
width: w,
height: h,
aspect,
};
onImgLoad(this);
}, false);
}
setSrc(src) {
this.image.src = src;
}
clampSize(maxW, maxH) {
const info = this.info;
if(!info) { throw new Error(`No size info yet (${this.image.src})`); }
const w = info.width,
h = info.height,
shrinkageW = maxW / w,
shrinkageH = maxH / h,
shrinkage = Math.min(shrinkageW, shrinkageH),
clamped = (shrinkage < 1) ? [w * shrinkage, h * shrinkage] : [w, h];
return clamped;
}
render(canvSize) {
const canvas = this.canvas;
if(canvSize) {
canvas.width = canvSize[0];
canvas.height = canvSize[1];
}
const w = canvas.width,
h = canvas.height,
[imgW, imgH] = this.clampSize(w, h),
padW = (w - imgW) / 2,
padH = (h - imgH) / 2;
const ctx = canvas.getContext('2d');
ctx.drawImage(this.image, padW, padH, imgW, imgH);
}
}
/**
* Draws a warped image on a canvas by comparing a normal and a warped triangulation.
*/
function warpImage(img, triSource, triTarget, canvas, lerpT) {
const um = ABOUtils.Math,
uc = ABOUtils.Canvas,
ug = ABOUtils.Geom;
function drawTriangle(s1, s2, s3, d1, d2, d3) {
//TODO: Expand dest ~.5, and source similarly based on area difference..
//Overlap the destination areas a little
//to avoid hairline cracks when drawing mulitiple connected triangles.
const [d1x, d2x, d3x] = [d1, d2, d3], //ug.expandTriangle(d1, d2, d3, .3),
[s1x, s2x, s3x] = [s1, s2, s3]; //ug.expandTriangle(s1, s2, s3, .3);
uc.drawImageTriangle(img, ctx,
s1x, s2x, s3x,
d1x, d2x, d3x, true);
}
const { w, h } = triTarget.size,
ctx = canvas.getContext('2d'),
tri1 = triSource.getTriangles(true),
tri2 = triTarget.getTriangles(true),
co1 = triSource.getEffectivePoints().map(p => p.coord);
let co2 = triTarget.getEffectivePoints().map(p => p.coord);
if(lerpT || (lerpT === 0)) {
co2 = um.lerp(co1, co2, lerpT);
}
ctx.clearRect(0,0, w,h);
tri1.forEach((t1, i) => {
const corners1 = t1.map(i => co1[i]),
corners2 = t1.map(i => co2[i]);
drawTriangle(corners1[0], corners1[1], corners1[2],
corners2[0], corners2[1], corners2[2]);
});
}
(function() {
"use strict";
console.clear();
const um = ABOUtils.Math,
ud = ABOUtils.DOM,
[$, $$] = ud.selectors();
let _loader1, _loader2;
const _srcA = '',
_srcB = '',
_size = {
w: 400,
h: 400,
},
_maxSize = 500,
//Global state model. Can be changed from within Vue or from the outside.
_state = {
size: _size,
tri1: new Triangulator(_size, [{"coord":[53,77]},{"coord":[106,35]},{"coord":[152,38]},{"coord":[238,56]},{"coord":[282,67]},{"coord":[312,123]},{"coord":[271,122]},{"coord":[251,155]},{"coord":[211,276]},{"coord":[216,318]},{"coord":[191,403]},{"coord":[153,459]},{"coord":[92,90]},{"coord":[101,117]},{"coord":[78,211]},{"coord":[56,222]},{"coord":[0,302]},{"coord":[143,95]},{"coord":[229,111]},{"coord":[175,169]},{"coord":[115,158]},{"coord":[118,212]},{"coord":[207,225]},{"coord":[229,177]},{"coord":[59,113]},{"coord":[287,157]},{"coord":[87,153]},{"coord":[247,188]},{"coord":[86,247]},{"coord":[177,324]},{"coord":[122,384]},{"coord":[80,459]},{"coord":[139,110]},{"coord":[228,125]}]),
tri2: new Triangulator(_size, [{"coord":[99,13]},{"coord":[129,35]},{"coord":[156,69]},{"coord":[222,73]},{"coord":[261,33]},{"coord":[287,31]},{"coord":[274,107]},{"coord":[264,146]},{"coord":[182,263]},{"coord":[180,306]},{"coord":[120,385]},{"coord":[68,459]},{"coord":[99,87]},{"coord":[98,119]},{"coord":[78,135]},{"coord":[44,142]},{"coord":[0,150]},{"coord":[150,127]},{"coord":[211,131]},{"coord":[175,169]},{"coord":[135,167]},{"coord":[136,195]},{"coord":[210,200]},{"coord":[220,171]},{"coord":[91,37]},{"coord":[288,64]},{"coord":[91,126]},{"coord":[246,188]},{"coord":[97,181]},{"coord":[150,248]},{"coord":[94,307]},{"coord":[51,459]},{"coord":[135,137]},{"coord":[223,142]}]),
selectedIndex: -1,
};
Vue.component('triangulator', {
template: `
<svg :width="size.w" :height="size.h" @click="addPoint">
<g class="edges">
<connector class="edge" v-for="(e, i) in edges" :start="e[0]" :end="e[1]"></connector>
</g>
<g class="nodes">
<drag-node class="point" v-for="(p, i) in points" v-model="p.coord" :class="{ selected: (i === selectedIndex) }" :r="10" :data-index="i"></drag-node>
</g>
</svg>`,
props: ['model', 'selectedIndex'],
computed: {
size() { return this.model.size; },
points() { return this.model.points; },
edges() { return this.model.getEdges(); },
},
mounted() {
const that = this,
svg = this.$el,
deleteThreshold = 20;
function findPointIndex(node) {
const index = parseInt(node.dataset.index);
return index;
}
dragTracker({
container: svg,
selector: '[data-draggable]',
propagateEvents: true,
//dragOutside: false,
callback: (node, pos) => {
const x = pos[0],
y = pos[1],
point = that.points[findPointIndex(node)];
let normPos;
//Drag a point above the canvas to delete:
if(y < -deleteThreshold) {
point.toDelete = true;
normPos = pos;
}
else {
const w = that.size.w,
h = that.size.h;
normPos = [um.clamp(x, 0, w), um.clamp(y, 0, h)];
}
//const event = new CustomEvent('dragging', { detail: { pos: nodePos } });
const event = document.createEvent('CustomEvent');
event.initCustomEvent('dragging', true, false, { pos: normPos } );
node.dispatchEvent(event);
},
callbackDragStart: (node, pos) => {
that.select(findPointIndex(node));
},
callbackDragEnd: (node, pos) => {
const point = that.points[findPointIndex(node)];
if(point.toDelete) {
that.deletePoint(findPointIndex(node))
}
},
});
},
methods: {
addPoint(e) {
const svg = e.currentTarget;
if(e.target !== svg) { return; }
const coord = ud.relativeMousePos(e, svg);
this.model.addPoint(coord);
this.$emit('added');
this.select(this.model.points.length - 1);
},
select(index) {
this.$emit('selected', index);
},
deletePoint(index) {
this.$emit('deleted', index);
},
},
});
new Vue({
el: '#app',
data: {
state: _state,
morphAnim: null,
},
mounted() {
console.log('main mounted');
//Handle rendering of the "before" and "after" images.
function onLoad(loader) {
const info1 = _loader1.info,
info2 = _loader2.info;
//Once we have two images loaded, render both with the same size:
let size;
if(info1 && info2) {
size = _loader1.clampSize(_maxSize, _maxSize);
_loader1.render(size);
_loader2.render(size);
}
//Render the very first image while we wait for a second one:
else {
size = loader.clampSize(_maxSize, _maxSize);
loader.render(size);
}
_size.w = size[0];
_size.h = size[1];
}
[_loader1, _loader2] = $$('.image-container').map(container => {
const canvas = $('.img', container),
input = $('input', container),
loader = new ImageRenderer(canvas, onLoad);
const onChange = (file) => {
loader.setSrc(file.url);
this.stopAnim();
}
ud.dropImage(container, onChange);
ud.dropImage(input, onChange);
return loader;
});
_loader1.setSrc(_srcA);
_loader2.setSrc(_srcB);
},
methods: {
sizer() {
const obj = {
width: _size.w + 'px',
height: _size.h + 'px',
};
return obj;
},
clear() {
this.state.tri1.points = [];
this.state.tri2.points = [];
},
stopAnim() {
if(this.morphAnim) { this.morphAnim.cancel(); }
},
warp() {
const c1 = $('#c1'),
c2 = $('#c2');
let skip = false;
function frame(t) {
//30fps is more than enough:
skip = !skip;
if(skip) { return; }
warpImage(_loader1.canvas, _state.tri1, _state.tri2, c1, t);
warpImage(_loader2.canvas, _state.tri2, _state.tri1, c2, (1-t));
c2.style.opacity = t;
}
this.stopAnim();
this.morphAnim = ud.animate(3000, frame, true);
},
//Sync added, selected and deleted points between the two lists:
onAdded() {
const a = this.state.tri1,
b = this.state.tri2,
[source, target] = (a.points.length > b.points.length) ? [a, b] : [b, a],
[sourcePoints, targetPoints] = [source.points, target.points];
while(targetPoints.length < sourcePoints.length) {
target.addPoint(sourcePoints[targetPoints.length].coord);
}
},
onSelected(index) {
this.stopAnim();
this.state.selectedIndex = index;
},
onDeleted(index) {
this.$delete(this.state.tri1.points, index);
this.$delete(this.state.tri2.points, index);
},
},
filters: {
prettyCompact: function(obj) {
return 'tri1: new Triangulator(_size, ' + JSON.stringify(obj.tri1.points) + '),\n' +
'tri2: new Triangulator(_size, ' + JSON.stringify(obj.tri2.points) + '),\n\n';
if(!obj) return '';
const pretty = JSON.stringify(obj, null, 2),
//Collapse simple arrays (arrays without objects or nested arrays) to one line:
compact = pretty.replace(/\[[^[{]*?]/g, (match => match.replace(/\s+/g, ' ')))
return compact;
}
},
});
})();
body {
//display: flex;
//justify-content: space-around;
//align-items: flex-start;
margin: 0;
font-family: Georgia, sans-serif;
background: #222;
//background-image: url('http://a1star.com/images/starsglow1.gif');
h1 {
margin: 1em 0;;
text-align: center;
color: white;
}
button {
padding: 1em;
font: inherit;
}
footer {
padding: 2em 1em;
background: darkorange;
color: maroon;
}
}
#app {
//display: flex;
//flex-flow: row wrap;
//align-items: flex-start;
text-align: center;
//margin: 1em;
padding: .5em 0;
background: gainsboro;
.group {
display: inline-block;
vertical-align: top;
margin: .5em .8em;
button {
display: block;
margin: auto;
margin-bottom: .5em;
}
}
.image-container {
position: relative;
display: inline-block;
background: white;
.draw-area {
text-align: left;
overflow: hidden;
}
input {
//This also disables keyboard navigation..
// display: none;
position: absolute;
z-index: -1;
opacity: 0;
width: 0;
+ span {
position: relative;
display: block;
padding: .5em;
box-sizing: border-box;
background: purple;
color: white;
cursor: pointer;
}
&:focus + span,
&:active + span,
+ span:hover {
background: darkviolet;
outline: 2px solid violet;
}
}
}
#morph {
position: relative;
display: table;
canvas {
background: white;
+ canvas {
position: absolute;
top:0; left:0;
}
}
}
svg {
position: absolute;
top:0; left:0;
.connector {
stroke: rgba(dodgerblue, .5);
stroke-width: 1;
stroke-dasharray: 2;
pointer-events: none;
}
[data-draggable] {
stroke: black;
fill: rgba(white, .2);
fill: url(#point-grad);
cursor: move;
&.selected {
fill: rgba(yellow, .5);
}
}
}
pre {
flex: 1 1 auto;
margin: .5em 1em;
background: white;
color: #888;
border: 1px solid gainsboro;
overflow: auto;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment