docker pull nvcr.io/nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04
docker run -e NVIDIA_VISIBLE_DEVICES=0 --gpus 0 -it --shm-size=1g --ulimit memlock=-1 --rm -v $PWD:/workspace/work $docker_image
apt-get update
apt-get install -y vim git wget
wget https://github.com/Kitware/CMake/releases/download/v3.15.3/cmake-3.15.3-Linux-x86_64.sh
bash cmake-3.15.3-Linux-x86_64.sh
wget https://repo.anaconda.com/archive/Anaconda3-2019.07-Linux-x86_64.sh
./Anaconda3-2019.07-Linux-x86_64.sh
eval "$(/root/anaconda3/bin/conda shell.bash hook)"
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing
conda install -c pytorch magma-cuda100
git clone --recursive https://github.com/pytorch/pytorch
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
cd pytorch
python setup.py install
cd /
wget http://releases.llvm.org/8.0.0/clang+llvm-8.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz
tar -xf clang+llvm-8.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz
export PATH=$PATH:/clang+llvm-8.0.0-x86_64-linux-gnu-ubuntu-16.04/bin/
ln -s /clang+llvm-8.0.0-x86_64-linux-gnu-ubuntu-16.04/bin/llvm-config /usr/bin/llvm-config
git clone --recursive https://github.com/pytorch/tvm.git
cd tvm/
python setup.py install --cmake
docker commit <container_id> <image_name>