Created
June 4, 2025 13:03
-
-
Save Steboss/629272f057ef01ab644f08e22f734445 to your computer and use it in GitHub Desktop.
Example for using SLURM in Fuji
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
#SBATCH -A something | |
#SBATCH -p some partition | |
#SBATCH -N 2 # number of nodes to use | |
#SBATCH -t | |
#SBATCH -J | |
export CONFIG="fuji-70B-v2-flash" | |
export CONTAINER="my-container" | |
export BASE_DIR="this is the dir where I want to save the outputs from SLURM + where my Python script is" | |
export BASE_SCRIPT="this is the name of the Python script I am using" | |
export GBS="global batch size" | |
read -r -d '' cmd <<'EOF' | |
# the only XLA FLAG I've used | |
export XLA_PYTHON_CLIENT_MEM_FRACTION=0.9 | |
# cd to the dir where I want to save outputs | |
cd ${BASE_DIR} | |
python3 $BASE_SCRIPT --output_log_file=/opt/host/output.log --module=text.gpt.c4_trainer --config=${CONFIG} --jax_backend=gpu --trainer_dir=/opt/host/axlearn-checkpoints --data_dir=gs://axlearn-public/tensorflow_datasets --ici_fsdp=8 --dcn_dp=2 --gbs=${GBS} --ga=1 --seq_len=4096 --max_step=301 --write_summary_steps=300 --num_processes=${SLURM_NTASKS} --distributed_coordinator=${SLURM_LAUNCH_NODE_IPADDR}:12345 --process_id=${SLURM_PROCID} --world_size=16 | |
EOF | |
# folder for reporting output from slurm | |
FOLDER="some_folder" | |
mkdir -p "${FOLDER}" | |
OUTFILE="${FOLDER}/output-%j.txt" | |
srun \ | |
-o "${OUTFILE}" \ | |
-e "${OUTFILE}" \ | |
--container-image=${CONTAINER} \ | |
${MOUNTS} \ | |
${EXPORTS} \ | |
--container-remap=root \ | |
bash -c "${cmd}" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment