-
-
Save StefanPetrick/9c091d9a28a902af5a7b540e40442c64 to your computer and use it in GitHub Desktop.
// Polar basics demo for the | |
// FastLED Podcast #2 | |
// https://www.youtube.com/watch?v=KKjFRZFBUrQ | |
// | |
// VO.1 preview version | |
// by Stefan Petrick 2023 | |
// This code is licenced under a | |
// Creative Commons Attribution | |
// License CC BY-NC 3.0 | |
#include <FastLED.h> | |
#include <FLOAT.h> | |
#define WIDTH 16 // how many LEDs are in one row? | |
#define HEIGHT 16 // how many rows? | |
#define NUM_LEDS ((WIDTH) * (HEIGHT)) | |
float runtime; // elapse ms since startup | |
float newdist, newangle; // parameters for image reconstruction | |
float z; // 3rd dimension for the 3d noise function | |
float offset_x, offset_y; // wanna shift the cartesians during runtime? | |
float scale_x, scale_y; // cartesian scaling in 2 dimensions | |
float dist, angle; // the actual polar coordinates | |
int x, y; // the cartesian coordiantes | |
int num_x = WIDTH; // horizontal pixel count | |
int num_y = HEIGHT; // vertical pixel count | |
// Background for setting the following 2 numbers: the FastLED inoise16() function returns | |
// raw values ranging from 0-65535. In order to improve contrast we filter this output and | |
// stretch the remains. In histogram (photography) terms this means setting a blackpoint and | |
// a whitepoint. low_limit MUST be smaller than high_limit. | |
uint16_t low_limit = 30000; // everything lower drawns in black | |
// higher numer = more black & more contrast present | |
uint16_t high_limit = 50000; // everything higher gets maximum brightness & bleeds out | |
// lower number = the result will be more bright & shiny | |
float center_x = (num_x / 2) - 0.5; // the reference point for polar coordinates | |
float center_y = (num_y / 2) - 0.5; // (can also be outside of the actual xy matrix) | |
//float center_x = 20; // the reference point for polar coordinates | |
//float center_y = 20; | |
CRGB leds[WIDTH * HEIGHT]; // framebuffer | |
float theta [WIDTH] [HEIGHT]; // look-up table for all angles | |
float distance[WIDTH] [HEIGHT]; // look-up table for all distances | |
float vignette[WIDTH] [HEIGHT]; | |
float inverse_vignette[WIDTH] [HEIGHT]; | |
float spd; // can be used for animation speed manipulation during runtime | |
float show1, show2, show3, show4, show5; // to save the rendered values of all animation layers | |
float red, green, blue; // for the final RGB results after the colormapping | |
float c, d, e, f; // factors for oscillators | |
float linear_c, linear_d, linear_e, linear_f; // linear offsets | |
float angle_c, angle_d, angle_e, angle_f; // angle offsets | |
float noise_angle_c, noise_angle_d, noise_angle_e, noise_angle_f; // angles based on linear noise travel | |
float dir_c, dir_d, dir_e, dir_f; // direction multiplicators | |
void setup() { | |
Serial.begin(115200); // check serial monitor for current fps count | |
// Teensy users: make sure to use the hardware SPI pins 11 & 13 | |
// for best performance | |
FastLED.addLeds<APA102, 11, 13, BGR, DATA_RATE_MHZ(12)>(leds, NUM_LEDS); | |
// FastLED.addLeds<NEOPIXEL, 13>(leds, NUM_LEDS); | |
render_polar_lookup_table(); // precalculate all polar coordinates | |
// to improve the framerate | |
render_vignette_table(9.5); // the number is the desired radius in pixel | |
// WIDTH/2 generates a circle | |
} | |
void loop() { | |
// set speedratios for the offsets & oscillators | |
spd = 0.05 ; | |
c = 0.013 ; | |
d = 0.017 ; | |
e = 0.2 ; | |
f = 0.007 ; | |
calculate_oscillators(); // get linear offsets and oscillators going | |
// ...and now let's generate a frame | |
for (x = 0; x < num_x; x++) { | |
for (y = 0; y < num_y; y++) { | |
// pick polar coordinates from look the up table | |
dist = distance [x] [y]; | |
angle = theta [y] [x]; | |
// Generation of one layer. Explore the parameters and what they do. | |
scale_x = 10000; // smaller value = zoom in, bigger structures, less detail | |
scale_y = 10000; // higher = zoom out, more pixelated, more detail | |
z = 0; // must be >= 0 | |
newangle = angle + angle_c; | |
newdist = dist; | |
offset_x = 0; // must be >=0 | |
offset_y = 0; // must be >=0 | |
show1 = render_pixel(); | |
// Colormapping - Assign rendered values to colors | |
red = show1; | |
green = 0; | |
blue = 0; | |
// Check the final results. | |
// Discard faulty RGB values & write the valid results into the framebuffer. | |
write_pixel_to_framebuffer(); | |
} | |
} | |
// BRING IT ON! SHOW WHAT YOU GOT! | |
FastLED.show(); | |
// check serial monitor for current performance data | |
EVERY_N_MILLIS(500) report_performance(); | |
} | |
//-----------------------------------------------------------------------------------end main loop -------------------- | |
void calculate_oscillators() { | |
runtime = millis(); // save elapsed ms since start up | |
runtime = runtime * spd; // global anaimation speed | |
linear_c = runtime * c; // some linear rising offsets 0 to max | |
linear_d = runtime * d; | |
linear_e = runtime * e; | |
linear_f = runtime * f; | |
angle_c = fmodf(linear_c, 2 * PI); // some cyclic angle offsets 0 to 2*PI | |
angle_d = fmodf(linear_d, 2 * PI); | |
angle_e = fmodf(linear_e, 2 * PI); | |
angle_f = fmodf(linear_f, 2 * PI); | |
dir_c = sinf(angle_c); // some direction oscillators -1 to 1 | |
dir_d = sinf(angle_d); | |
dir_e = sinf(angle_e); | |
dir_f = sinf(angle_f); | |
uint16_t noi; | |
noi = inoise16(10000 + linear_c * 100000); // some noise controlled angular offsets | |
noise_angle_c = map_float(noi, 0, 65535 , 0, 4*PI); | |
noi = inoise16(20000 + linear_d * 100000); | |
noise_angle_d = map_float(noi, 0, 65535 , 0, 4*PI); | |
noi = inoise16(30000 + linear_e * 100000); | |
noise_angle_e = map_float(noi, 0, 65535 , 0, 4*PI); | |
noi = inoise16(40000 + linear_f * 100000); | |
noise_angle_f = map_float(noi, 0, 65535 , 0, 4*PI); | |
} | |
// given a static polar origin we can precalculate | |
// all the (expensive) polar coordinates | |
void render_polar_lookup_table() { | |
for (int xx = 0; xx < num_x; xx++) { | |
for (int yy = 0; yy < num_y; yy++) { | |
float dx = xx - center_x; | |
float dy = yy - center_y; | |
distance[xx] [yy] = hypotf(dx, dy); | |
theta[xx] [yy] = atan2f(dy, dx); | |
} | |
} | |
} | |
// calculate distance and angle of the point relative to | |
// the polar origin defined by center_x & center_y | |
void get_polar_values() { | |
// calculate current cartesian distances (deltas) from polar origin point | |
float dx = x - center_x; | |
float dy = y - center_y; | |
// calculate distance between current point & polar origin | |
// (length of the origin vector, pythgorean theroem) | |
// dist = sqrt((dx*dx)+(dy*dy)); | |
dist = hypotf(dx, dy); | |
// calculate the angle | |
// (where around the polar origin is the current point?) | |
angle = atan2f(dy, dx); | |
// done, that's all we need | |
} | |
// convert polar coordinates back to cartesian | |
// & render noise value there | |
float render_pixel() { | |
// convert polar coordinates back to cartesian ones | |
float newx = (offset_x + center_x - (cosf(newangle) * newdist)) * scale_x; | |
float newy = (offset_y + center_y - (sinf(newangle) * newdist)) * scale_y; | |
// render noisevalue at this new cartesian point | |
uint16_t raw_noise_field_value = inoise16(newx, newy, z); | |
// a lot is happening here, namely | |
// A) enhance histogram (improve contrast) by setting the black and white point | |
// B) scale the result to a 0-255 range | |
// it's the contrast boosting & the "colormapping" (technically brightness mapping) | |
if (raw_noise_field_value < low_limit) raw_noise_field_value = low_limit; | |
if (raw_noise_field_value > high_limit) raw_noise_field_value = high_limit; | |
float scaled_noise_value = map_float(raw_noise_field_value, low_limit, high_limit, 0, 255); | |
return scaled_noise_value; | |
// done, we've just rendered one color value for one single pixel | |
} | |
// float mapping maintaining 32 bit precision | |
// we keep values with high resolution for potential later usage | |
float map_float(float x, float in_min, float in_max, float out_min, float out_max) { | |
float result = (x-in_min) * (out_max-out_min) / (in_max-in_min) + out_min; | |
if (result < out_min) result = out_min; | |
if( result > out_max) result = out_max; | |
return result; | |
} | |
// Avoid any possible color flicker by forcing the raw RGB values to be 0-255. | |
// This enables to play freely with random equations for the colormapping | |
// without causing flicker by accidentally missing the valid target range. | |
void rgb_sanity_check() { | |
// rescue data if possible: when negative return absolute value | |
if (red < 0) red = abs(red); | |
if (green < 0) green = abs(green); | |
if (blue < 0) blue = abs(blue); | |
// discard everything above the valid 0-255 range | |
if (red > 255) red = 255; | |
if (green > 255) green = 255; | |
if (blue > 255) blue = 255; | |
} | |
// check result after colormapping and store the newly rendered rgb data | |
void write_pixel_to_framebuffer() { | |
// the final color values shall not exceed 255 (to avoid flickering pixels caused by >255 = black...) | |
// negative values * -1 | |
rgb_sanity_check(); | |
CRGB finalcolor = CRGB(red, green, blue); | |
// write the rendered pixel into the framebutter | |
leds[XY(x, y)] = finalcolor; | |
} | |
// find the right led index | |
uint16_t XY(uint8_t x, uint8_t y) { | |
if (y & 1) // check last bit | |
return (y + 1) * WIDTH - 1 - x; // reverse every second line for a serpentine lled layout | |
else | |
return y * WIDTH + x; // use this equation only for a line by line led layout | |
} // remove the previous 3 lines of code in this case | |
// make it look nicer - expand low brightness values and compress high brightness values, | |
// basically we perform gamma curve bending for all 3 color chanels, | |
// making more detail visible which otherwise tends to get lost in brightness | |
void adjust_gamma() { | |
for (uint16_t i = 0; i < NUM_LEDS; i++) | |
{ | |
leds[i].r = dim8_video(leds[i].r); | |
leds[i].g = dim8_video(leds[i].g); | |
leds[i].b = dim8_video(leds[i].b); | |
} | |
} | |
// precalculate a radial brightness mask | |
void render_vignette_table(float filter_radius) { | |
for (int xx = 0; xx < num_x; xx++) { | |
for (int yy = 0; yy < num_y; yy++) { | |
vignette[xx] [yy] = (filter_radius - distance[xx] [yy]) / filter_radius; | |
if (vignette[xx] [yy] < 0) vignette[xx] [yy] = 0; | |
} | |
} | |
} | |
// show current framerate and rendered pixels per second | |
void report_performance() { | |
int fps = FastLED.getFPS(); // frames per second | |
int kpps = (fps * HEIGHT * WIDTH) / 1000; // kilopixel per second | |
Serial.print(kpps); Serial.print(" kpps ... "); | |
Serial.print(fps); Serial.print(" fps @ "); | |
Serial.print(WIDTH*HEIGHT); Serial.println(" LEDs ... "); | |
} |
I recommend you have a look at https://github.com/marcmerlin/FastLED_NeoMatrix
and https://github.com/marcmerlin/FastLED_NeoMatrix_SmartMatrix_LEDMatrix_GFX_Demos/
once you convert to neomatrix_config.h , you can run your code on any backend you'd like
explained in more details here: https://marc.merlins.org/perso/arduino/post_2020-03-16_Framebuffer_GFX_-Choosing-between-its-3-2D-APIs_-FastLED-XY_-NeoMatrix_-and-LEDMatrix_-and-detail-of-its-many-supported-hardware-backends.html
Thank you, looks very nice and useful! I'll have a look into it when I find time to come back to this project, hopefully next week. Since I communicate with the backend only in one single function it should be fairly simple to add support for other drivers / devices. Next goal is to release the first version (for FastLED or SmartMatrix) and have people playing with it, after that support for more interfaces.
Oh, I forgot I could reply here, sorry ;)
(but I can't mention it like a bug in a git CL, so the rest went to StefanPetrick/FunkyClouds#2 )
I added your code to my list of FastLED demos: marcmerlin/FastLED_NeoMatrix_SmartMatrix_LEDMatrix_GFX_Demos@3c24408
and here is the version that works on linux native including pre-built binary: marcmerlin/ArduinoOnPc-FastLED-GFX-LEDMatrix@4c89452
Here is a video of how it works on linux, although in the conversion I may have lost something, the pattern doesn't seem to change much:
https://www.youtube.com/watch?v=vVZdAFXelq4
(and yes, it's not meant to work on a non square display, I understand that, I just happened to randomly have 128x192 when I compiled this)
Looks like the polar center of the look-up table needs to be adjusted to the center of the rendering window. Non-square window should be no problem.
It's your code, you know it better than me. With the links I gave you, you can now compile it yourself on arduino/fastled, or any other matrix type, or even linux
Get the lastest
https://github.com/marcmerlin/FastLED_NeoMatrix_SmartMatrix_LEDMatrix_GFX_Demos and your code is in FastLED_NeoMatrix_SmartMatrix_LEDMatrix_GFX_Demos/FastLED/PolarBasics/
If you are willing to contribute your other demos for everyone to enjoy on all kinds of matrices and hardware, I will happily accept your pull requests :)
Noise-oscillators: noise_angle_c - noise_angle_f returns 0 < value < 4*PI —> it’s an angle modulator (varying rotation speed)
dir_c - dir_f —> directional modulator, e.a. multiplikator, returns -1 < value < 1
angle_c - angle_f —> linear angle modulator (constant rotation speed) 0<value<2PI
linear_c - linear_f --> linear offsets for cartesian shif / scroll / zoom