Created
May 29, 2023 07:52
-
-
Save SteffenPL/84cc7a07a1b12a3a6156cf04c7957961 to your computer and use it in GitHub Desktop.
Solving differential inclusion (simple example)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using ForwardDiff | |
using OrdinaryDiffEq | |
using LinearAlgebra | |
############## | |
## Setup ## | |
############## | |
struct DIProblem{odeT,consT} | |
ode::odeT | |
cons::consT | |
end | |
struct OneStepPJ | |
end | |
struct OneStepPJIntegrator{consT} | |
cons::consT | |
end | |
(::OneStepPJ)(di::DIProblem) = OneStepPJIntegrator(di.cons) | |
function newton_raphson!(u, con) | |
c = con(u) | |
if c < 0 | |
dc = ForwardDiff.gradient(con, u) | |
Δu = -c / dot(dc, dc) * dc | |
u .+= Δu | |
end | |
return nothing | |
end | |
function (cs::OneStepPJIntegrator)(integrator) | |
foreach( con -> newton_raphson!(integrator.u, con), cs.cons) | |
end | |
function SciMLBase.solve(di::DIProblem, alg; kwargs...) | |
each_step(u, t, integrator) = true | |
affect! = alg.lincompl(di) | |
cb = DiscreteCallback(each_step, affect!; save_positions = (false, true)) | |
return solve(di.ode, alg.ode; save_everystep = false, callback = cb, kwargs...) | |
end | |
############## | |
## Example ## | |
############## | |
cons = ( | |
u -> u[1], | |
u -> 2.0 - u[2], | |
u -> abs(u[1] - u[2]) - 1.0 | |
) | |
function ode!(du, u, p, t) | |
du[1] = -p.gamma * u[1] | |
du[2] = -p.gamma * u[2] | |
end | |
ode = ODEProblem( ode!, [0.0, 2.0], (0.0,1.0), (gamma = 10.0,)) | |
prob = DIProblem(ode, cons) | |
alg = (ode = Euler(), lincompl = OneStepPJ()) | |
sol = solve(prob, alg, dt = 0.001) | |
################ | |
## Error plot ## | |
################ | |
using CairoMakie | |
exact_sol = [0.0, 1.0] | |
begin | |
f = Figure() | |
ax = Axis(f[1,1], title = "Trajectories") | |
lines!(sol.t, sol[1,:], label = "u[1]") | |
lines!(sol.t, sol[2,:], label = "u[2]") | |
axislegend(ax) | |
Axis(f[2,1], title = "Constraints", ylabel = "constraint (should be >= 0)", xlabel = "time") | |
for con in cons | |
lines!(sol.t, con.(sol.u)) | |
end | |
dts = [2.0^(-i) for i in 1:16] | |
err = [norm(solve(prob, alg, dt = dt)[end] - exact_sol) for dt in dts] | |
ax = Axis(f[1:2,2], xscale = log2, yscale = log2) | |
ax.xlabel = L"h" | |
ax.ylabel = L"\Vert x^{\text{exact}}(T) - x(T) \Vert^2 " | |
ax.title = "Error plot" | |
lines!(dts, err) | |
scatter!(dts, err) | |
f | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment