Skip to content

Instantly share code, notes, and snippets.

@SteveBronder
Created September 16, 2020 21:50
Show Gist options
  • Save SteveBronder/d95bdf4bbb8ab0fa195a7ed9e3d0a140 to your computer and use it in GitHub Desktop.
Save SteveBronder/d95bdf4bbb8ab0fa195a7ed9e3d0a140 to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
# This file is part of Eigen, a lightweight C++ template library
# for linear algebra.
#
# Copyright (C) 2009 Benjamin Schindler <[email protected]>
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
# Pretty printers for Eigen::Matrix
# This is still pretty basic as the python extension to gdb is still pretty basic.
# It cannot handle complex eigen types and it doesn't support many of the other eigen types
# This code supports fixed size as well as dynamic size matrices
# To use it:
#
# * Create a directory and put the file as well as an empty __init__.py in
# that directory.
# * Create a ~/.gdbinit file, that contains the following:
# python
# import sys
# sys.path.insert(0, '/path/to/eigen/printer/directory')
# from printers import register_eigen_printers
# register_eigen_printers (None)
# end
import gdb
import re
import itertools
from bisect import bisect_left
# Basic row/column iteration code for use with Sparse and Dense matrices
class _MatrixEntryIterator(object):
def __init__(self, rows, cols, rowMajor):
self.rows = rows
self.cols = cols
self.currentRow = 0
self.currentCol = 0
self.rowMajor = rowMajor
def __iter__(self):
return self
def next(self):
return self.__next__() # Python 2.x compatibility
def __next__(self):
row = self.currentRow
col = self.currentCol
if self.rowMajor == 0:
if self.currentCol >= self.cols:
raise StopIteration
self.currentRow = self.currentRow + 1
if self.currentRow >= self.rows:
self.currentRow = 0
self.currentCol = self.currentCol + 1
else:
if self.currentRow >= self.rows:
raise StopIteration
self.currentCol = self.currentCol + 1
if self.currentCol >= self.cols:
self.currentCol = 0
self.currentRow = self.currentRow + 1
return (row, col)
class EigenMatrixPrinter:
"Print Eigen Matrix or Array of some kind"
def __init__(self, variety, val):
"Extract all the necessary information"
# Save the variety (presumably "Matrix" or "Array") for later usage
self.variety = variety
# The gdb extension does not support value template arguments - need to extract them by hand
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
tag = self.type.tag
regex = re.compile("\<.*\>")
m = regex.findall(tag)[0][1:-1]
template_params = m.split(",")
template_params = [x.replace(" ", "") for x in template_params]
if (
template_params[1] == "-0x00000000000000001"
or template_params[1] == "-0x000000001"
or template_params[1] == "-1"
):
self.rows = val["m_storage"]["m_rows"]
else:
self.rows = int(template_params[1])
if (
template_params[2] == "-0x00000000000000001"
or template_params[2] == "-0x000000001"
or template_params[2] == "-1"
):
self.cols = val["m_storage"]["m_cols"]
else:
self.cols = int(template_params[2])
self.options = 0 # default value
if len(template_params) > 3:
self.options = template_params[3]
self.rowMajor = int(self.options) & 0x1
self.innerType = self.type.template_argument(0)
self.val = val
# Fixed size matrices have a struct as their storage, so we need to walk through this
self.data = self.val["m_storage"]["m_data"]
if self.data.type.code == gdb.TYPE_CODE_STRUCT:
self.data = self.data["array"]
self.data = self.data.cast(self.innerType.pointer())
class _iterator(_MatrixEntryIterator):
def __init__(self, rows, cols, dataPtr, rowMajor):
super(EigenMatrixPrinter._iterator, self).__init__(rows, cols, rowMajor)
self.dataPtr = dataPtr
def __next__(self):
row, col = super(EigenMatrixPrinter._iterator, self).__next__()
item = self.dataPtr.dereference()
self.dataPtr = self.dataPtr + 1
if self.cols == 1: # if it's a column vector
return ("[%d]" % (row,), item)
elif self.rows == 1: # if it's a row vector
return ("[%d]" % (col,), item)
return ("[%d,%d]" % (row, col), item)
def children(self):
return self._iterator(self.rows, self.cols, self.data, self.rowMajor)
def to_string(self):
return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (
self.variety,
self.innerType,
self.rows,
self.cols,
"RowMajor" if self.rowMajor else "ColMajor",
self.data,
)
## map printer
# Basic row/column iteration code for use with Sparse and Dense matrices
class _MapEntryIterator(object):
def __init__(self, rows, cols, rowMajor):
self.rows = rows
self.cols = cols
self.currentRow = 0
self.currentCol = 0
self.rowMajor = rowMajor
def __iter__(self):
return self
def next(self):
return self.__next__() # Python 2.x compatibility
def __next__(self):
row = self.currentRow
col = self.currentCol
if self.rowMajor == 0:
if self.currentCol >= self.cols:
raise StopIteration
self.currentRow = self.currentRow + 1
if self.currentRow >= self.rows:
self.currentRow = 0
self.currentCol = self.currentCol + 1
else:
if self.currentRow >= self.rows:
raise StopIteration
self.currentCol = self.currentCol + 1
if self.currentCol >= self.cols:
self.currentCol = 0
self.currentRow = self.currentRow + 1
return (row, col)
class EigenMapPrinter:
"Print Eigen Map or Array of some kind"
def __init__(self, variety, val):
"Extract all the necessary information"
# Save the variety (presumably "Map" or "Array") for later usage
self.variety = variety
# The gdb extension does not support value template arguments - need to extract them by hand
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
tag = self.type.tag
regex = re.compile("\<.*\>")
m = regex.findall(tag)[0][1:-1]
template_params = m.split(",")
template_params = [x.replace(" ", "") for x in template_params]
regex2 = re.compile("\<.*\>")
m_inner = regex2.findall(m)[0][1:-1].split(">")[0]
inner_template_params = m_inner.split(",")
inner_template_params = [x.replace(" ", "") for x in inner_template_params]
if (
inner_template_params[1] == "-0x00000000000000001"
or inner_template_params[1] == "-0x000000001"
or inner_template_params[1] == "-1"
):
self.rows = val["m_rows"]["m_value"]
else:
self.rows = int(inner_template_params[1])
if (
inner_template_params[2] == "-0x00000000000000001"
or inner_template_params[2] == "-0x000000001"
or inner_template_params[2] == "-1"
):
self.cols = val["m_cols"]["m_value"]
else:
self.cols = int(inner_template_params[2])
self.options = 0 # default value
if len(inner_template_params) > 3:
self.options = inner_template_params[3]
self.rowMajor = int(self.options) & 0x1
self.innerType = self.type.template_argument(0)
self.val = val
# Fixed size matrices have a struct as their storage, so we need to walk through this
self.data = self.val["m_data"]
if self.data.type.code == gdb.TYPE_CODE_STRUCT:
self.data = self.data["array"]
self.data = self.data.cast(self.innerType.pointer())
class _iterator(_MapEntryIterator):
def __init__(self, rows, cols, dataPtr, rowMajor):
super(EigenMapPrinter._iterator, self).__init__(rows, cols, rowMajor)
self.dataPtr = dataPtr
def __next__(self):
row, col = super(EigenMapPrinter._iterator, self).__next__()
item = self.dataPtr.dereference()
self.dataPtr = self.dataPtr + 1
if self.cols == 1: # if it's a column vector
return ("[%d]" % (row,), item)
elif self.rows == 1: # if it's a row vector
return ("[%d]" % (col,), item)
return ("[%d,%d]" % (row, col), item)
def children(self):
return self._iterator(self.rows, self.cols, self.data, self.rowMajor)
def to_string(self):
return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else "ColMajor", self.data)
##
class EigenSparseMatrixPrinter:
"Print an Eigen SparseMatrix"
def __init__(self, val):
"Extract all the necessary information"
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
tag = self.type.tag
regex = re.compile("\<.*\>")
m = regex.findall(tag)[0][1:-1]
template_params = m.split(",")
template_params = [x.replace(" ", "") for x in template_params]
self.options = 0
if len(template_params) > 1:
self.options = template_params[1]
self.rowMajor = int(self.options) & 0x1
self.innerType = self.type.template_argument(0)
self.val = val
self.data = self.val["m_data"]
self.data = self.data.cast(self.innerType.pointer())
class _iterator(_MatrixEntryIterator):
def __init__(self, rows, cols, val, rowMajor):
super(EigenSparseMatrixPrinter._iterator, self).__init__(
rows, cols, rowMajor
)
self.val = val
def __next__(self):
row, col = super(EigenSparseMatrixPrinter._iterator, self).__next__()
# repeat calculations from SparseMatrix.h:
outer = row if self.rowMajor else col
inner = col if self.rowMajor else row
start = self.val["m_outerIndex"][outer]
end = (
(start + self.val["m_innerNonZeros"][outer])
if self.val["m_innerNonZeros"]
else self.val["m_outerIndex"][outer + 1]
)
# and from CompressedStorage.h:
data = self.val["m_data"]
if start >= end:
item = 0
elif (end > start) and (inner == data["m_indices"][end - 1]):
item = data["m_values"][end - 1]
else:
# create Python index list from the target range within m_indices
indices = [
data["m_indices"][x] for x in range(int(start), int(end) - 1)
]
# find the index with binary search
idx = int(start) + bisect_left(indices, inner)
if (idx < end) and (data["m_indices"][idx] == inner):
item = data["m_values"][idx]
else:
item = 0
return ("[%d,%d]" % (row, col), item)
def children(self):
if self.data:
return self._iterator(self.rows(), self.cols(), self.val, self.rowMajor)
return iter([]) # empty matrix, for now
def rows(self):
return self.val["m_outerSize"] if self.rowMajor else self.val["m_innerSize"]
def cols(self):
return self.val["m_innerSize"] if self.rowMajor else self.val["m_outerSize"]
def to_string(self):
if self.data:
status = "not compressed" if self.val["m_innerNonZeros"] else "compressed"
else:
status = "empty"
dimensions = "%d x %d" % (self.rows(), self.cols())
layout = "row" if self.rowMajor else "column"
return "Eigen::SparseMatrix<%s>, %s, %s major, %s" % (
self.innerType,
dimensions,
layout,
status,
)
class EigenQuaternionPrinter:
"Print an Eigen Quaternion"
def __init__(self, val):
"Extract all the necessary information"
# The gdb extension does not support value template arguments - need to extract them by hand
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
self.innerType = self.type.template_argument(0)
self.val = val
# Quaternions have a struct as their storage, so we need to walk through this
self.data = self.val["m_coeffs"]["m_storage"]["m_data"]["array"]
self.data = self.data.cast(self.innerType.pointer())
class _iterator:
def __init__(self, dataPtr):
self.dataPtr = dataPtr
self.currentElement = 0
self.elementNames = ["x", "y", "z", "w"]
def __iter__(self):
return self
def next(self):
return self.__next__() # Python 2.x compatibility
def __next__(self):
element = self.currentElement
if self.currentElement >= 4: # there are 4 elements in a quanternion
raise StopIteration
self.currentElement = self.currentElement + 1
item = self.dataPtr.dereference()
self.dataPtr = self.dataPtr + 1
return ("[%s]" % (self.elementNames[element],), item)
def children(self):
return self._iterator(self.data)
def to_string(self):
return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data)
def build_eigen_dictionary():
pretty_printers_dict[
re.compile("^Eigen::Quaternion<.*>$")
] = lambda val: EigenQuaternionPrinter(val)
pretty_printers_dict[
re.compile("^Eigen::Matrix<.*>$")
] = lambda val: EigenMatrixPrinter("Matrix", val)
pretty_printers_dict[
re.compile("^Eigen::Map<.*>$")
] = lambda val: EigenMapPrinter("Map", val)
pretty_printers_dict[
re.compile("^Eigen::SparseMatrix<.*>$")
] = lambda val: EigenSparseMatrixPrinter(val)
pretty_printers_dict[
re.compile("^Eigen::Array<.*>$")
] = lambda val: EigenMatrixPrinter("Array", val)
def register_eigen_printers(obj):
"Register eigen pretty-printers with objfile Obj"
if obj == None:
obj = gdb
obj.pretty_printers.append(lookup_function)
def lookup_function(val):
"Look-up and return a pretty-printer that can print va."
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
type = type.unqualified().strip_typedefs()
typename = type.tag
if typename == None:
return None
for function in pretty_printers_dict:
if function.search(typename):
return pretty_printers_dict[function](val)
return None
pretty_printers_dict = {}
build_eigen_dictionary()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment