Created
July 21, 2014 13:35
-
-
Save StevenMaude/ea46edc315b0f94d03b9 to your computer and use it in GitHub Desktop.
Do TF-IDF with scikit-learn and print top features
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# encoding: utf-8 | |
import codecs | |
import os | |
import sys | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def get_document_filenames(document_path='/home/tool/document_text'): | |
return [os.path.join(document_path, each) | |
for each in os.listdir(document_path)] | |
def create_vectorizer(): | |
# Arguments here are tweaked for working with a particular data set. | |
# All that's really needed is the input argument. | |
return TfidfVectorizer(input='filename', max_features=200, | |
token_pattern='(?u)\\b[a-zA-Z]\\w{2,}\\b', | |
max_df=0.05, | |
stop_words='english', | |
ngram_range=(1, 3)) | |
def display_scores(vectorizer, tfidf_result): | |
# http://stackoverflow.com/questions/16078015/ | |
scores = zip(vectorizer.get_feature_names(), | |
np.asarray(tfidf_result.sum(axis=0)).ravel()) | |
sorted_scores = sorted(scores, key=lambda x: x[1], reverse=True) | |
for item in sorted_scores: | |
print "{0:50} Score: {1}".format(item[0], item[1]) | |
def main(): | |
vectorizer = create_vectorizer() | |
tfidf_result = vectorizer.fit_transform(get_document_filenames()) | |
display_scores(vectorizer, tfidf_result) | |
if __name__ == '__main__': | |
sys.stdout = codecs.getwriter('utf-8')(sys.stdout) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment