Last active
May 7, 2022 13:32
-
-
Save StrangeGirlMurph/427bbbdff06cdf94f30728cced69e823 to your computer and use it in GitHub Desktop.
Visualisierung für beliebig parametrisierte Kurven
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
norm[x_] := Sqrt[Simplify[x . x]]; | |
interval = 1.4; | |
f[t_] = {t^2, t^3 - t}; (* Kurve *) | |
v[t_] = D[f[t], t]; (* Geschwindigkeitsvektor *) | |
V[t_] = norm[v[t]]; (* Geschwindigkeit *) | |
a[t_] = D[v[t], t]; (* Beschleunigungsvektor *) | |
T[t_] = v[t]/ | |
V[t]; (* Tangentialvektor (Geschwindigkeitsvektor normiert) *) | |
nf[t_] = D[T[t], | |
t]; (* Normalvektor (aber wahrscheinlich nicht normiert) *) | |
k[t_] = norm[nf[t]]/V[t]; (* Krümmung *) | |
Nf[t_] = nf[t]/(k[t]*V[t]);(* Normalvektor *) | |
Manipulate[ | |
Show[ | |
ParametricPlot[{f[t]}, {t, -interval, interval}, | |
PlotLabel -> k[c]], (* Kurve *) | |
Graphics[{ | |
Blue, Thick, Arrow[{{0, 0}, f[c]}],(* Kurvenvektor *) | |
Green, Arrow[{f[c], f[c] + v[c]}],(* Geschwindigkeitsvektor *) | |
Red, Arrow[{f[c], f[c] + a[c]}], (* Beschleunigungsvektor *) | |
Darker[Green], Arrow[{f[c], f[c] + T[c]}],(* Tangentialvektor *) | |
Orange, Arrow[{f[c], f[c] + nf[c]}], (* | |
Normalvektor aber nicht normiert *) | |
Pink, Arrow[{f[c], f[c] + Nf[c]}], (* Normalvektor *) | |
Yellow, Circle[f[c] + Nf[c]*1/k[c], 1/k[c]] (* Krümmungskreis *) | |
}] | |
], {c, -interval, interval} | |
] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
norm[x_] := Sqrt[Simplify[x . x]]; | |
interval = 2 Pi; | |
f[t_] = {Cos[t], 2 Sin[t], 0.5 t}; (* Kurve *) | |
v[t_] = D[f[t], t]; (* Geschwindigkeitsvektor *) | |
V[t_] = norm[v[t]]; | |
a[t_] = D[v[t], t]; (* Beschleunigungsvektor *) | |
T[t_] = v[t]/ | |
V[t]; (* Tangentialvektor (Geschwindigkeitsvektor normiert) *) | |
nf[t_] = D[T[t], | |
t]; (* Normalvektor (aber wahrscheinlich nicht normiert) *) | |
k[t_] = norm[nf[t]]/V[t]; (* Krümmung *) | |
Nf[t_] = nf[t]/(k[t]*V[t]);(* Normalvektor *) | |
B[t_] = Cross[Nf[t], T[t]]; | |
tau[t_] = -Nf[t] . -(D[B[t], t]/V[t]); | |
Manipulate[ | |
Show[ | |
ParametricPlot3D[{f[t]}, {t, -interval, interval}, | |
PlotLabel -> StringForm["`` - ``", k[c], tau[c]]], (* Kurve *) | |
Graphics3D[{ | |
Blue, Thick, Arrow[{{0, 0, 0}, f[c]}],(* Kurvenvektor *) | |
Green, Arrow[{f[c], f[c] + v[c]}],(* Geschwindigkeitsvektor *) | |
Red, Arrow[{f[c], f[c] + a[c]}], (* Beschleunigungsvektor *) | |
Darker[Green], Arrow[{f[c], f[c] + T[c]}],(* Tangentialvektor *) | |
Orange, Arrow[{f[c], f[c] + nf[c]}], (* | |
Normalvektor aber nicht normiert *) | |
Yellow, Arrow[{f[c], f[c] + B[c]}], (* | |
Normalvektor aber nicht normiert *) | |
Pink, Arrow[{f[c], f[c] + Nf[c]}] (* Normalvektor *) | |
}] | |
], {c, -interval, interval} | |
] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Preview:
