Last active
July 24, 2022 19:21
-
-
Save StrikingLoo/481717106a5c9790d8a8fe2687fb7087 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image | |
import numpy as np | |
import sys | |
image = Image.open(sys.argv[1]) | |
image_data = np.asarray(image) | |
for i in range(image_data.shape[0]): | |
for j in range(image_data.shape[1]): | |
oldpixel = image_data[i][j] | |
newpixel = find_closest_palette_color(oldpixel[:3]) | |
image_data[i][j][:3] = newpixel | |
if oldpixel.shape[0] < 4 or oldpixel[3] > 0: | |
quant_error = oldpixel[:3] - newpixel | |
quant_error = quant_error/16 | |
j_not_out_of_bounds = (j < image_data.shape[1] -1) | |
if i < image_data.shape[0] -1: | |
image_data[i + 1][j ][:3] = image_data[i + 1][j ][:3] + quant_error * 5 | |
if j > 0: | |
image_data[i + 1][j - 1][:3] = image_data[i + 1][j - 1][:3] + quant_error * 3 | |
if j_not_out_of_bounds: | |
image_data[i + 1][j + 1][:3] = image_data[i + 1][j + 1][:3] + quant_error | |
if j_not_out_of_bounds: | |
image_data[i ][j + 1][:3] = image_data[i ][j + 1][:3] + quant_error * 7 | |
#taking only 3 values and leaving fourth the same so this works for RGBA images like .png | |
old_image = np.asarray(image) | |
output_image = Image.fromarray(image_data) | |
output_image.save(sys.argv[2]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment