Created
June 12, 2019 17:05
-
-
Save StrikingLoo/aa1d1ff7b9c38928d7587e5e6f040201 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fc_layer_size = 128 | |
img_size = IMG_SIZE | |
conv_inputs = keras.Input(shape=(img_size[1], img_size[0],3), name='ani_image') | |
conv_layer = layers.Conv2D(24, kernel_size=3, activation='relu')(conv_inputs) | |
conv_layer = layers.MaxPool2D(pool_size=(2,2))(conv_layer) | |
conv_x = layers.Flatten(name = 'flattened_features')(conv_layer) #turn image to vector. | |
conv_x = layers.Dense(fc_layer_size, activation='relu', name='first_layer')(conv_x) | |
conv_x = layers.Dense(fc_layer_size, activation='relu', name='second_layer')(conv_x) | |
conv_outputs = layers.Dense(1, activation='sigmoid', name='class')(conv_x) | |
conv_model = keras.Model(inputs=conv_inputs, outputs=conv_outputs) | |
customAdam = keras.optimizers.Adam(lr=1e-6) | |
conv_model.compile(optimizer=customAdam, # Optimizer | |
# Loss function to minimize | |
loss="binary_crossentropy", | |
# List of metrics to monitor | |
metrics=["binary_crossentropy","mean_squared_error"]) | |
#Epoch 5/5 loss: 1.6900 val_loss: 2.0413 val_mean_squared_error: 0.3688 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment