Created
June 12, 2019 16:44
-
-
Save StrikingLoo/f7c3504806c479c09ae56d9a8f7bd8a1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
SAMPLE_SIZE = 2048 | |
print("loading training cat images...") | |
cat_train_set = np.asarray([pixels_from_path(cat) for cat in glob.glob('cats/*')[:SAMPLE_SIZE]]) | |
print("loading training dog images...") | |
dog_train_set = np.asarray([pixels_from_path(dog) for dog in glob.glob('dogs/*')[:SAMPLE_SIZE]]) | |
valid_size = 512 | |
print("loading validation cat images...") | |
cat_valid_set = np.asarray([pixels_from_path(cat) for cat in glob.glob('cats/*')[-valid_size:]]) | |
print("loading validation dog images...") | |
dog_valid_set = np.asarray([pixels_from_path(dog) for dog in glob.glob('dogs/*')[-valid_size:]]) | |
# generate X and Y (inputs and labels). | |
x_train = np.concatenate([cat_train_set, dog_train_set]) | |
labels_train = np.asarray([1 for _ in range(SAMPLE_SIZE)]+[0 for _ in range(SAMPLE_SIZE)]) | |
x_valid = np.concatenate([cat_valid_set, dog_valid_set]) | |
labels_valid = np.asarray([1 for _ in range(valid_size)]+[0 for _ in range(valid_size)]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment