Created
September 5, 2014 01:51
-
-
Save Subv/3fda0f9c375989fb40e9 to your computer and use it in GitHub Desktop.
Proof from Discrete Math (WIP)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\usepackage{amsmath}% http://ctan.org/pkg/amsmath | |
\everymath{\displaystyle} | |
\begin{document} | |
\Huge | |
$\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right)} = n2^{n-1}$ | |
\newline | |
\newline | |
Now we prove it for n+1. | |
$\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n + 1 \\ | |
j | |
\end{array} | |
\right)} = (n + 1)2^{n}$ | |
$\sum_{j=0}^{n+1}{j\left( | |
\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right) | |
+ | |
\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right) | |
\right)}$ | |
$\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right)} | |
+ | |
\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
$\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right)} | |
+ | |
\left(n+1\right) | |
\left( | |
\begin{array}{c} | |
n \\ | |
n + 1 | |
\end{array} | |
\right) | |
+ | |
\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
% Expand the combination | |
$\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right)} | |
+ | |
\left( | |
\frac{\left(n + 1\right)n!}{\left(n+1\right)!\left(n - n + 1\right)!} | |
\right) | |
+ | |
\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
% Cancel the terms | |
$\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j | |
\end{array} | |
\right)} | |
+ | |
\left( | |
\frac{n!}{n!} | |
\right) | |
+ | |
\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
% Replace the terms | |
$n2^{n-1} | |
+ | |
1 | |
+ | |
\sum_{j=0}^{n+1}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
$n2^{n-1} | |
+ | |
1 | |
+ | |
\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)} | |
+ | |
\left(n + 1\right) | |
\left( | |
\begin{array}{c} | |
n \\ | |
n + 1 - 1 | |
\end{array} | |
\right)$ | |
% Replace some more terms | |
$n + 2 + n2^{n-1} | |
+ | |
\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
% Group terms | |
$2 + n\left(1 + 2^{n-1}\right) | |
+ | |
\sum_{j=0}^{n}{j\left( | |
\begin{array}{c} | |
n \\ | |
j - 1 | |
\end{array} | |
\right)}$ | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment