Last active
July 26, 2024 15:37
-
-
Save SunMarc/dcdb499ac16d355a8f265aa497645996 to your computer and use it in GitHub Desktop.
Finetune GPTQ model with peft and tlr
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import torch | |
from datasets import load_dataset | |
from peft import LoraConfig | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
HfArgumentParser, | |
AutoTokenizer, | |
TrainingArguments, | |
) | |
from peft import prepare_model_for_kbit_training, get_peft_model | |
from transformers import GPTQConfig | |
from trl import SFTTrainer | |
# This example fine-tunes Llama 2 model on Guanaco dataset | |
# using GPTQ and peft. | |
# Use it by correctly passing --model_name argument when running the | |
# script. The default model is ybelkada/llama-7b-GPTQ-test | |
# Versions used: | |
# accelerate == 0.21.0 | |
# auto-gptq == 0.4.2 | |
# trl == 0.4.7 | |
# peft from source | |
# transformers from source | |
# optimum from source | |
# For models that have `config.pretraining_tp > 1` install: | |
# pip install git+https://github.com/huggingface/transformers.git | |
@dataclass | |
class ScriptArguments: | |
""" | |
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train. | |
""" | |
local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"}) | |
per_device_train_batch_size: Optional[int] = field(default=4) | |
per_device_eval_batch_size: Optional[int] = field(default=1) | |
gradient_accumulation_steps: Optional[int] = field(default=4) | |
learning_rate: Optional[float] = field(default=2e-4) | |
max_grad_norm: Optional[float] = field(default=0.3) | |
weight_decay: Optional[int] = field(default=0.001) | |
lora_alpha: Optional[int] = field(default=16) | |
lora_dropout: Optional[float] = field(default=0.1) | |
lora_r: Optional[int] = field(default=64) | |
max_seq_length: Optional[int] = field(default=512) | |
model_name: Optional[str] = field( | |
default="ybelkada/llama-7b-GPTQ-test", | |
metadata={ | |
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc." | |
} | |
) | |
dataset_name: Optional[str] = field( | |
default="timdettmers/openassistant-guanaco", | |
metadata={"help": "The preference dataset to use."}, | |
) | |
num_train_epochs: Optional[int] = field( | |
default=1, | |
metadata={"help": "The number of training epochs for the reward model."}, | |
) | |
fp16: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Enables fp16 training."}, | |
) | |
bf16: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Enables bf16 training."}, | |
) | |
packing: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Use packing dataset creating."}, | |
) | |
gradient_checkpointing: Optional[bool] = field( | |
default=True, | |
metadata={"help": "Enables gradient checkpointing."}, | |
) | |
optim: Optional[str] = field( | |
default="adamw_hf", | |
metadata={"help": "The optimizer to use."}, | |
) | |
lr_scheduler_type: str = field( | |
default="constant", | |
metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"}, | |
) | |
max_steps: int = field(default=10000, metadata={"help": "How many optimizer update steps to take"}) | |
warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"}) | |
group_by_length: bool = field( | |
default=True, | |
metadata={ | |
"help": "Group sequences into batches with same length. Saves memory and speeds up training considerably." | |
}, | |
) | |
save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."}) | |
logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."}) | |
merge_and_push: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Merge and push weights after training"}, | |
) | |
output_dir: str = field( | |
default="./results", | |
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
) | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
def create_and_prepare_model(args): | |
major, _ = torch.cuda.get_device_capability() | |
if major >= 8: | |
print("=" * 80) | |
print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16") | |
print("=" * 80) | |
# Load the entire model on the GPU 0 | |
device_map = {"":0} | |
# switch to `device_map = "auto"` for multi-GPU | |
# device_map = "auto" | |
# need to disable exllama kernel | |
# exllama kernel are not very stable for training | |
model = AutoModelForCausalLM.from_pretrained( | |
args.model_name, | |
device_map=device_map, | |
quantization_config= GPTQConfig(bits=4, disable_exllama=True) | |
) | |
# check: https://github.com/huggingface/transformers/pull/24906 | |
model.config.pretraining_tp = 1 | |
peft_config = LoraConfig( | |
lora_alpha=script_args.lora_alpha, | |
lora_dropout=script_args.lora_dropout, | |
r=script_args.lora_r, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
return model, peft_config, tokenizer | |
training_arguments = TrainingArguments( | |
output_dir=script_args.output_dir, | |
per_device_train_batch_size=script_args.per_device_train_batch_size, | |
gradient_accumulation_steps=script_args.gradient_accumulation_steps, | |
optim=script_args.optim, | |
save_steps=script_args.save_steps, | |
logging_steps=script_args.logging_steps, | |
learning_rate=script_args.learning_rate, | |
fp16=script_args.fp16, | |
bf16=script_args.bf16, | |
max_grad_norm=script_args.max_grad_norm, | |
max_steps=script_args.max_steps, | |
warmup_ratio=script_args.warmup_ratio, | |
group_by_length=script_args.group_by_length, | |
lr_scheduler_type=script_args.lr_scheduler_type, | |
) | |
model, peft_config, tokenizer = create_and_prepare_model(script_args) | |
model = prepare_model_for_kbit_training(model) | |
model = get_peft_model(model, peft_config) | |
model.config.use_cache = False | |
dataset = load_dataset(script_args.dataset_name, split="train") | |
# Fix weird overflow issue with fp16 training | |
tokenizer.padding_side = "right" | |
trainer = SFTTrainer( | |
model=model, | |
train_dataset=dataset, | |
dataset_text_field="text", | |
max_seq_length=script_args.max_seq_length, | |
tokenizer=tokenizer, | |
args=training_arguments, | |
packing=script_args.packing, | |
) | |
trainer.train() | |
if script_args.merge_and_push: | |
output_dir = os.path.join(script_args.output_dir, "final_checkpoints") | |
trainer.model.save_pretrained(output_dir) | |
# Free memory for merging weights | |
del model | |
torch.cuda.empty_cache() |
@SunMarc
I am trying this with llama3.1 8B gptq My model gets loaded unevenly on the GPU so not able to use more than 1 batch size on a 4 A10 GPU machine. huggingface/transformers#32199
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
working for me with quantized model . Is it possible to merge the resulting adapter with the base model of gptq ? any example for this ?