Last active
June 14, 2022 07:25
-
-
Save Sunmish/2502f14ae9403cd93cafea2b4a63c6a6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
from argparse import ArgumentParser | |
import numpy as np | |
from scipy.optimize import curve_fit | |
from matplotlib import pyplot as plt | |
def powerlaw(x, a, b): | |
return a*(x**b) | |
def powerlaw_amplitude(x0, y0, b): | |
return y0/(x0**b) | |
def cpowerlaw(x, a, b, c): | |
return a*(x**b)*np.exp(c*np.log(x)**2) | |
def cpowerlaw_amplitude(x0, y0, b, c): | |
return y0 / (x0**b * np.exp(c*np.log(x0)**2)) | |
def do_fit(f, x, y, yerr=None, params=None): | |
""" | |
""" | |
if f == powerlaw and params is None: | |
params = [powerlaw_amplitude(x[0], y[0], -1.), -1.] | |
print("initial params: {:.2f}, {:.2f}".format(params[0], params[1])) | |
elif f == cpowerlaw and params is None: | |
params = [cpowerlaw_amplitude(x[0], y[0], -2, 0), -2, 0] | |
print("initial params: {:.2f}, {:.2f}, {:.2f}".format(params[0], params[1], params[2])) | |
if yerr is not None: | |
yerr = np.asarray(yerr) | |
popt, pcov = curve_fit(f, np.asarray(x), np.asarray(y), params, | |
absolute_sigma=True, | |
method="lm", | |
sigma=yerr, | |
maxfev=100000) | |
perr = np.sqrt(np.diag(pcov)) | |
return popt, perr # [amplitude, index, [curvature]], [amplitude_error, index_error, [curvature]] | |
def plot(outname, f, x, y, yerr, params, | |
xlabel="Frequency [Hz]", | |
ylabel="Flux density [Jy]"): | |
""" | |
""" | |
plt.close("all") | |
fig = plt.figure(figsize=(8, 6)) | |
ax1 = plt.axes([0.1, 0.1*(6./8.), 0.85, 1.-0.15*(6./8.)]) | |
ax1.errorbar(x, y, yerr=yerr, xerr=None, fmt="o", ecolor="crimson", | |
mec="crimson", mfc="crimson", ms=7.) | |
x_fit = np.linspace(min(x), max(x), 1000) | |
ax1.plot(x_fit, f(x_fit, *params), color="black", ls="--") | |
ax1.set_xlabel(xlabel, fontsize=22., labelpad=0.) | |
ax1.set_ylabel(ylabel, fontsize=22., labelpad=2.) | |
ax1.tick_params(axis="both", which="both", labelsize=20., pad=7.) | |
ax1.tick_params(which="major", length=10.) | |
ax1.tick_params(which="minor", length=5.) | |
plt.xscale("log") | |
plt.yscale("log") | |
fig.savefig(outname, bbox_inches="tight") | |
plt.close("all") | |
def fit_data(freq, flux, error_flux, model=powerlaw, outname=None): | |
""" | |
""" | |
popt, perr = do_fit(model, freq, flux, error_flux) | |
print("alpha = {:.3f} +/- {:.3f}".format(popt[1], perr[1])) | |
if outname is not None: | |
plot(outname, model, freq, flux, error_flux, popt) | |
def cli(): | |
ps = ArgumentParser() | |
ps.add_argument("--freq", nargs="*", type=float, default=None) | |
ps.add_argument("--flux", nargs="*", type=float, default=None) | |
ps.add_argument("--eflux", nargs="*", type=float, default=None) | |
ps.add_argument("--model", default="powerlaw", choices=["powerlaw", "cpowerlaw"]) | |
ps.add_argument("--outname", default=None) | |
args = ps.parse_args() | |
if args.freq is None: | |
print("Not frequencies supplied, using example values.") | |
args.freq = [8.76750e+07, 1.18395e+08, 1.54235e+08, 1.84955e+08, 2.15675e+08] | |
args.flux = [0.31363076, 0.18222292, 0.1234044 , 0.0824026 , 0.05035876] | |
args.eflux = [0.05768504, 0.02998243, 0.02007691, 0.0142974 , 0.01048357] | |
elif len(args.freq) != len(args.flux) or len(args.freq) != len(args.eflux): | |
raise RuntimeError("Every measurement needs and uncertainty.") | |
if args.model == "powerlaw": | |
model = powerlaw | |
elif args.model == "cpowerlaw": | |
model = cpowerlaw | |
fit_data(args.freq, args.flux, args.eflux, model, args.outname) | |
if __name__ == "__main__": | |
cli() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment