Skip to content

Instantly share code, notes, and snippets.

@SuperShinyEyes
Last active December 18, 2018 21:07
Show Gist options
  • Save SuperShinyEyes/9f6aaf35b149882b681ccf6df2652d4a to your computer and use it in GitHub Desktop.
Save SuperShinyEyes/9f6aaf35b149882b681ccf6df2652d4a to your computer and use it in GitHub Desktop.
import tensorflow as tf
from time import time
start = time()
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
end = time()
def get_time_format(elapsed):
hour = (elapsed) // (60*60)
min = (elapsed - hour * 60*60) // (60)
sec = elapsed % 60
return '{:02.0f}:{:02.0f}:{:02.0f}'.format(hour, min, sec)
print("The script ran for ", get_time_format(end - start))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment