Last active
December 18, 2018 21:07
-
-
Save SuperShinyEyes/9f6aaf35b149882b681ccf6df2652d4a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from time import time | |
start = time() | |
mnist = tf.keras.datasets.mnist | |
(x_train, y_train),(x_test, y_test) = mnist.load_data() | |
x_train, x_test = x_train / 255.0, x_test / 255.0 | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(), | |
tf.keras.layers.Dense(512, activation=tf.nn.relu), | |
tf.keras.layers.Dropout(0.2), | |
tf.keras.layers.Dense(10, activation=tf.nn.softmax) | |
]) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) | |
model.fit(x_train, y_train, epochs=5) | |
model.evaluate(x_test, y_test) | |
end = time() | |
def get_time_format(elapsed): | |
hour = (elapsed) // (60*60) | |
min = (elapsed - hour * 60*60) // (60) | |
sec = elapsed % 60 | |
return '{:02.0f}:{:02.0f}:{:02.0f}'.format(hour, min, sec) | |
print("The script ran for ", get_time_format(end - start)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment