Skip to content

Instantly share code, notes, and snippets.

@SuvroBaner
Created December 23, 2019 04:55
Show Gist options
  • Save SuvroBaner/28ca648989de994ae3bff618b554d9e0 to your computer and use it in GitHub Desktop.
Save SuvroBaner/28ca648989de994ae3bff618b554d9e0 to your computer and use it in GitHub Desktop.
def update_parameters_with_gd(parameters, grads, learning_rate):
"""
Update parameters using one step of gradient descent
Arguments:
parameters -- python dictionary containing your parameters to be updated:
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients to update each parameters:
grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
learning_rate -- the learning rate, scalar.
Returns:
parameters -- python dictionary containing your updated parameters
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Update rule for each parameter
for l in range(L):
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*grads['dW' + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*grads['db' + str(l+1)]
return parameters
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment