Created
September 20, 2024 19:03
-
-
Save SwampThingPaul/3793ce0a161ce88bc3c044164cd301a0 to your computer and use it in GitHub Desktop.
stats_playtime Simpson's paradox
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(dplyr) | |
theme_set(theme_minimal(base_size = 16)+ | |
theme_bw()+ | |
theme(panel.border = element_rect("black",fill=NA,linewidth=1))) | |
# Create sample data | |
set.seed(123) | |
n <- 100 | |
groups <- 5 | |
xcorr = -0.74 | |
xgroup.mean = c(2.5,5,7,8,10) | |
data <- data.frame( | |
x = NA, # rep(runif(n, 0, 12), groups), | |
y = NA, | |
group = factor(rep(1:groups, each = n)) | |
) | |
# Generate y values with different correlations for each group | |
correlations <- c(0.74, 0.82, 0.75, 0.72, 0.69) | |
for (i in 1:groups) { | |
data$x[data$group == i] <- (runif(n, xgroup.mean[i]-1, xgroup.mean[i]+1)*xcorr)+10 | |
data$y[data$group == i] <- correlations[i] * data$x[data$group == i] + | |
rnorm(n, mean = i * 2, sd = 1) | |
} | |
# Create the plot | |
ggplot(data, aes(x = x, y = y, color = group)) + | |
geom_point(alpha = 0.7) + | |
geom_smooth(aes(group = group),method = "lm", se = FALSE, color = "red") + | |
scale_color_discrete(name = "Group") + | |
labs( | |
x = "X", | |
y = "Y" | |
) + | |
geom_smooth(method = "lm", se = FALSE, color = "black",linetype=2) + | |
theme_minimal() + | |
theme(legend.position = "none") | |
# Mixed model | |
## An adapted example from https://fromthebottomoftheheap.net/2021/02/02/random-effects-in-gams/ | |
## LME version | |
library(lme4) | |
mod.lme <- lmer(y~ x + (1 | group) + (0 + x | group),data = data) | |
summary(mod.lme) | |
fixef(mod.lme); # fixed effects | |
summary(mod.lme)$varcor | |
# ranef(mod.lme); # random effects | |
## MGCV version | |
library(mgcv) | |
library(gratia) | |
mod.mgcv <- gam(y ~ x+ | |
s(group,bs="re")+ | |
s(group,x,bs="re"), | |
data = data,method="REML") | |
summary(mod.mgcv) | |
coef(mod.mgcv)[1:2] | |
variance_comp(mod.mgcv) | |
data$gam.ranef.pred <- predict(mod.mgcv,newdata = data) | |
data$gam.fixef.pred <- predict(mod.mgcv,newdata = data,exclude=c("s(group)", "s(group,x)")) | |
fixef.pred = data.frame(x = rep(range(data$x),5), | |
group = factor(rep(1:groups, each = 2))) | |
fixef.pred$gam.fixef.pred <- predict(mod.mgcv,newdata = fixef.pred,exclude=c("s(group)", "s(group,x)")) | |
# data$lme.ranef.pred <- predict(mod.lme,newdata = data); # same prediction as GAM | |
# plot(lme.ranef.pred~gam.ranef.pred,data);abline(0,1,col="red") | |
ggplot(data, aes(x = x, y = y, color = group)) + | |
geom_point(alpha = 0.7) + | |
scale_color_discrete(name = "Group") + | |
geom_line(data = data, aes(x=x,y=gam.ranef.pred,group=group,linetype = "Random Effect"),color="blue",linewidth=1)+ | |
geom_line(data = data, aes(x=x,y=gam.fixef.pred,linetype = "Fixed Effect"),color="black",linewidth=0.5)+ | |
geom_smooth(se = FALSE, aes(linetype = "Naive linear model (all data)"), | |
color = "gray50", method = "lm")+ | |
geom_smooth(aes(group = group,linetype = "Group linear model"),method = "lm", se = FALSE, color = "red") + | |
labs( | |
x = "X", | |
y = "Y" | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment