Created
July 28, 2021 13:41
-
-
Save Swarchal/d014e95159dffa868885f89a07e0d6dc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import tempfile | |
from collections import defaultdict | |
import string | |
import htsomeropy | |
import pandas as pd | |
from tqdm import tqdm | |
import cellprofiler_core.preferences as cpprefs | |
cpprefs.set_headless() | |
import cellprofiler | |
import cellprofiler.modules as cpm | |
import cellprofiler_core.pipeline as cpp | |
from cellprofiler_core.modules.injectimage import InjectImage | |
HERE = os.path.dirname(os.path.abspath(__file__)) | |
PIPELINE_PATH = os.path.join(HERE, "pipeline.cppipe") | |
N_WELLS = 20 | |
# tempfile | |
new_output_directory = os.path.normcase(tempfile.mkdtemp()) | |
cpprefs.set_default_output_directory(new_output_directory) | |
def load_pipeline(pipeline_path=PIPELINE_PATH): | |
pipeline = cpp.Pipeline() | |
pipeline.load(pipeline_path) | |
return pipeline | |
def prep_pipeline(pipeline): | |
"""remove first 4 modules which aren't needed""" | |
for i in range(4): | |
pipeline.remove_module(1) | |
return pipeline | |
try: | |
omero = htsomeropy.gateway.Omero() | |
omero.interactive_login() | |
print(" ** connected to omero ** ") | |
plate = omero.plate(plate_id=52) | |
orig_pipeline = load_pipeline(PIPELINE_PATH) | |
pipeline = prep_pipeline(orig_pipeline) | |
wells = plate.wells | |
wells = wells[:N_WELLS] | |
well_count = len(wells) | |
files = defaultdict(list) | |
for well in tqdm(wells): | |
for field_n, field in enumerate(tqdm(well.fields, leave=False), 1): | |
pipeline_copy = pipeline.copy() | |
for img, channel_name in field.channels: | |
inject_image_module = InjectImage(channel_name, img) | |
inject_image_module.set_module_num(1) | |
pipeline_copy.add_module(inject_image_module) | |
#print(f"analysing plate:{plate.name}, well:{well.name} field:{field_n}") | |
m = pipeline_copy.run() | |
# collect results | |
for obj in ["nuclei", "cells"]: | |
path = os.path.join(new_output_directory, f"MyExpt_{obj}.csv") | |
f = pd.read_csv(path, index_col=None, header=0) | |
f["Metadata_well"] = well.name | |
f["Metadata_site"] = field_n | |
f["CellCount"] = f.shape[0] | |
files[obj].append(f) | |
for obj in ["nuclei", "cells"]: | |
df = pd.concat(files[obj], ignore_index=True) | |
print(df) | |
df.to_csv(f"output_{obj}.csv", index=False) | |
finally: | |
omero.disconnect() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment