Last active
September 5, 2019 08:42
-
-
Save Syncrossus/7ca61a35127dfa476d40287a6a3e5d49 to your computer and use it in GitHub Desktop.
Fisher's dynamic programming algorithm for time series clustering in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Fisher's criterion computation function | |
# arguments : | |
# clusters : list as returned by clustfisher (see below) | |
# return : | |
# the value of the criterion | |
fisherCriterion <- function(clusters){ | |
diameterSum <- 0 | |
if(length(clusters$instants)==1){ | |
diameterSum <- sum(clusters$D[clusters$instants[1:length(clusters$instants)-1], clusters$instants[2:length(clusters$instants)]-1]) | |
} | |
return(clusters$D[1, clusters$instants[1]-1] + diameterSum + clusters$D[clusters$instants[length(clusters$instants)], clusters$n]) | |
} | |
# Diameter matrix computation function as defined in Fisher's algorithm | |
# arguments : | |
# sequence : the dataset | |
# return : | |
# The Diameter matrix | |
diameters <- function(sequence){ | |
n <- nrow(sequence) | |
D <- matrix(data = 0, nrow = n, ncol = n) | |
#diameter triangular matrix computation | |
for(a in 1:n){ | |
for(b in a:n){ | |
if(dim(sequence)[2]==1){ # handling 1 dimension datasets that otherwise crash colSums(sequence[a:b, ]) | |
Mu_ab <- sum(sequence[a:b, ]) / (b - a + 1) | |
}else if(is.null(dim(sequence[a:b, ]))){ # handling a=b, which otherwise crashes colSums(sequence[a:b, ]) | |
Mu_ab <- sequence[a:b, ] | |
}else{ | |
Mu_ab <- colSums(sequence[a:b, ]) / (b - a + 1) | |
} | |
# - double transposing is required because R is weird with column vectors. | |
D[a, b] <- sum(rowSums(t(t(sequence[a:b, ]) - Mu_ab)^2)) | |
} | |
} | |
return(D) | |
} | |
# Fisher's dynamic programming algorithm for time series clustering function | |
# arguments : | |
# sequence : the dataset | |
# segments : the desired number of segments | |
# return : | |
# the labels of the points | |
# the cluster change instants | |
# the diameter matrix | |
# the M1 & M2 matrices | |
# the number of observations in the dataset (useful to compute the criterion) | |
clustfisher <- function(sequence, segments=2){ | |
# init | |
K <- segments | |
n <- nrow(sequence) | |
p <- ncol(sequence) | |
M1 <- matrix(data = 0, nrow = n, ncol = K) | |
M2 <- matrix(data = 0, nrow = n, ncol = K) | |
t <- rep(0, (K-1)) | |
cluster <- rep(0, (K-1)) | |
D <- diameters(sequence) | |
# computing optimal criteria | |
M1[,1] <- D[1,] | |
for(k in 2:K){ | |
for (i in k:n) { | |
M1[i, k] <- min(M1[(k-1):(i-1), (k-1)]+D[k:i, i]) | |
# here, we apply which.min on M1[(k-1):(i-1), (k-1)] which is a new matrix with indices that sart over at 1 | |
# there is thus an offset of k-1 in the indices with respect to the original matrix. | |
M2[i, k] <- which.min(M1[(k-1):(i-1), (k-1)]+D[k:i, i]) + k - 1 | |
} | |
} | |
# computing optimal cluster limits in time | |
k <- (K-1) | |
m <- n | |
while(k >= 1){ | |
# m > 0 <=> t[k] - 1 > 0 <=> t[k] > 1 <=> M2[m, (k+1)] > 1 => voir ligne 48 | |
t[k] <- M2[m, (k+1)] | |
m <- t[k] - 1 | |
k <- k-1 | |
} | |
# class labels formed from cluster limits | |
for(i in seq(1, (t[1] - 1))){ | |
cluster[i] <- 1 | |
} | |
if(K>2){ | |
for(k in seq(2, (K - 1))){ | |
for(i in seq(t[k-1], t[k] - 1)){ | |
cluster[i] <- k | |
} | |
} | |
} | |
for(i in seq(t[K-1],n)){ | |
cluster[i] <- K | |
} | |
return(list("labels" = cluster, "instants" = t, "D" = D, "M1" = M1, "M2" = M2, "n"=n)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This code is released under the .