Last active
August 25, 2018 13:30
-
-
Save Synthetica9/14ab958b1d54f7575e76a7fbd0926509 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env nix-shell | |
#! nix-shell -i python -p "with python3Packages; [python hypothesis]" | |
from hypothesis import * | |
from hypothesis.strategies import * | |
from heapq import * | |
from itertools import count | |
from string import ascii_uppercase | |
class InitalSortedStack(object): | |
def __init__(self, src=None): | |
if src is None: | |
src = [] | |
src = list(src) | |
src = sorted(src) | |
self.content = src | |
def push(self, obj): | |
self.content.append(obj) | |
def pop(self): | |
return self.content.pop() | |
def empty(self): | |
return not self.content | |
def __repr__(self): | |
return repr(self.content) | |
class MaxHeap(InitalSortedStack): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.content = [-x for x in self.content] | |
heapify(self.content) | |
def push(self, obj): | |
heappush(self.content, -obj) | |
def pop(self): | |
return -heappop(self.content) | |
def __repr__(self): | |
return repr([-x for x in self.content]) | |
@composite | |
def zero_sum_lists(draw, *args, **kwargs): | |
l = draw(lists(integers(), *args, **kwargs)) | |
s = sum(l) | |
if sum(l) != 0 or draw(booleans()): # we shrink towards False | |
l.append(-s) | |
assert(sum(l) == 0) | |
return l | |
def algo(datastructure): | |
def func(data, verbose=False): | |
assert(sum(data) == 0) | |
pos = datastructure( x for x in data if x > 0) | |
neg = datastructure(-x for x in data if x < 0) | |
for i in count(0): | |
if verbose: | |
print("+:", pos, "-:", neg) | |
if pos.empty() or neg.empty(): | |
assert pos.empty() and neg.empty() | |
break | |
x = pos.pop() - neg.pop() | |
if x > 0: | |
pos.push(x) | |
elif x < 0: | |
neg.push(-x) | |
if verbose: | |
print("Transactions:", i) | |
return i | |
return func | |
naive = algo(InitalSortedStack) | |
smart = algo(MaxHeap) | |
if __name__ == '__main__': | |
criterion = lambda x: smart(x) < naive(x) | |
l = find(zero_sum_lists(), criterion) | |
l = sorted(l, reverse=True) | |
for (n, x) in zip(ascii_uppercase, l): | |
print(f'{n}: {x:+}') | |
print() | |
print("Naive:") | |
naive(l, verbose=True) | |
print() | |
print("Smart:") | |
smart(l, verbose=True) | |
n = 0 | |
for i in range(10000): | |
l = zero_sum_lists().example() | |
n += criterion(l) | |
print(f'\nFound relevant in {round(100*n/i, 2)}% of randomly generated lists') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment