Created
July 29, 2021 10:38
-
-
Save Syzygianinfern0/c420e07f8ce7c0bacffd1cbfde043b7f to your computer and use it in GitHub Desktop.
Model Sharding - PyTorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.optim.lr_scheduler import StepLR | |
from torchvision import datasets, transforms | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 32, 3, 1).to("cuda:0") | |
self.conv2 = nn.Conv2d(32, 64, 3, 1).to("cuda:0") | |
self.dropout1 = nn.Dropout(0.25).to("cuda:0") | |
self.dropout2 = nn.Dropout(0.5).to("cuda:1") | |
self.fc1 = nn.Linear(9216, 128).to("cuda:1") | |
self.fc2 = nn.Linear(128, 10).to("cuda:2") | |
def forward(self, x): | |
x = self.conv1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = F.relu(x) | |
x = F.max_pool2d(x, 2) | |
x = self.dropout1(x) | |
x = x.to("cuda:1") | |
x = torch.flatten(x, 1) | |
x = self.fc1(x) | |
x = F.relu(x) | |
x = self.dropout2(x).to("cuda:2") | |
x = self.fc2(x) | |
output = F.log_softmax(x, dim=1) | |
return output | |
def train(args, model, device, train_loader, optimizer, epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
# data, target = data.to(device), target.to(device) | |
data, target = data.to("cuda:0"), target.to("cuda:2") | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print( | |
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | |
epoch, | |
batch_idx * len(data), | |
len(train_loader.dataset), | |
100.0 * batch_idx / len(train_loader), | |
loss.item(), | |
) | |
) | |
if args.dry_run: | |
break | |
def test(model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
# data, target = data.to(device), target.to(device) | |
data, target = data.to("cuda:0"), target.to("cuda:2") | |
output = model(data) | |
test_loss += F.nll_loss(output, target, reduction="sum").item() | |
pred = output.argmax(dim=1, keepdim=True) | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print( | |
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( | |
test_loss, | |
correct, | |
len(test_loader.dataset), | |
100.0 * correct / len(test_loader.dataset), | |
) | |
) | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description="PyTorch MNIST Example") | |
parser.add_argument( | |
"--batch-size", | |
type=int, | |
default=64, | |
metavar="N", | |
help="input batch size for training (default: 64)", | |
) | |
parser.add_argument( | |
"--test-batch-size", | |
type=int, | |
default=1000, | |
metavar="N", | |
help="input batch size for testing (default: 1000)", | |
) | |
parser.add_argument( | |
"--epochs", | |
type=int, | |
default=14, | |
metavar="N", | |
help="number of epochs to train (default: 14)", | |
) | |
parser.add_argument( | |
"--lr", | |
type=float, | |
default=1.0, | |
metavar="LR", | |
help="learning rate (default: 1.0)", | |
) | |
parser.add_argument( | |
"--gamma", | |
type=float, | |
default=0.7, | |
metavar="M", | |
help="Learning rate step gamma (default: 0.7)", | |
) | |
parser.add_argument( | |
"--no-cuda", action="store_true", default=False, help="disables CUDA training" | |
) | |
parser.add_argument( | |
"--dry-run", | |
action="store_true", | |
default=False, | |
help="quickly check a single pass", | |
) | |
parser.add_argument( | |
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)" | |
) | |
parser.add_argument( | |
"--log-interval", | |
type=int, | |
default=10, | |
metavar="N", | |
help="how many batches to wait before logging training status", | |
) | |
parser.add_argument( | |
"--save-model", | |
action="store_true", | |
default=False, | |
help="For Saving the current Model", | |
) | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
train_kwargs = {"batch_size": args.batch_size} | |
test_kwargs = {"batch_size": args.test_batch_size} | |
if use_cuda: | |
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True} | |
train_kwargs.update(cuda_kwargs) | |
test_kwargs.update(cuda_kwargs) | |
transform = transforms.Compose( | |
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] | |
) | |
dataset1 = datasets.MNIST( | |
"../datasets", | |
train=True, | |
download=True, | |
transform=transform, | |
) | |
dataset2 = datasets.MNIST( | |
"../datasets", train=False, transform=transform | |
) | |
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) | |
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | |
# model = Net().to(device) | |
model = Net() | |
optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | |
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | |
for epoch in range(1, args.epochs + 1): | |
train(args, model, device, train_loader, optimizer, epoch) | |
test(model, device, test_loader) | |
scheduler.step() | |
if args.save_model: | |
torch.save(model.state_dict(), "mnist_cnn.pt") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment