Created
June 27, 2015 18:07
-
-
Save TNick/b016e46d47d393e1a086 to your computer and use it in GitHub Desktop.
Pylearn2 nosetests results
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
root@affe4bc530fd:/usr/local/src/pylearn2# nosetests | |
/usr/local/src/pylearn2/pylearn2/packaged_dependencies/theano_linear/test_matrixmul.py:62: UserWarning: TODO: port these disabled tests to the new pylearn2 setup | |
warnings.warn("TODO: port these disabled tests to the new pylearn2 setup") | |
/opt/conda/lib/python2.7/site-packages/matplotlib/__init__.py:1318: UserWarning: This call to matplotlib.use() has no effect | |
because the backend has already been chosen; | |
matplotlib.use() must be called *before* pylab, matplotlib.pyplot, | |
or matplotlib.backends is imported for the first time. | |
warnings.warn(_use_error_msg) | |
..................../usr/local/src/pylearn2/pylearn2/training_algorithms/bgd.py:141: UserWarning: BGD is not compatible with stochastic costs and cannot determine whether the current cost is stochastic. | |
warnings.warn("BGD is not compatible with stochastic costs " | |
./usr/local/src/pylearn2/pylearn2/train.py:85: UserWarning: dataset has no yaml src, model won't know what data it was trained on | |
"data it was trained on") | |
./usr/local/src/pylearn2/pylearn2/monitor.py:572: UserWarning: Trained model saved without indicating yaml_src | |
'indicating yaml_src') | |
................SSSSSSSSSSSS............./usr/local/src/pylearn2/pylearn2/datasets/hdf5_deprecated.py:103: UserWarning: HDF5Dataset cannot perform test np.all(y < y_labels). Use y_labels at your own risk. | |
"y_labels). Use y_labels at your own risk.") | |
..SSSSSS.SSSSSSSSSSSSSSSSSSSSSSSSSSS......../usr/local/src/pylearn2/pylearn2/datasets/preprocessing.py:1202: UserWarning: This ZCA preprocessor class is known to yield very different results on different platforms. If you plan to conduct experiments with this preprocessing on multiple machines, it is probably a good idea to do the preprocessing on a single machine and copy the preprocessed datasets to the others, rather than preprocessing the data independently in each location. | |
warnings.warn("This ZCA preprocessor class is known to yield very " | |
.../usr/local/src/pylearn2/pylearn2/datasets/preprocessing.py:1502: UserWarning: inv_P_ was None. Computing inverse of P_ now. This will take some time. For efficiency, it is recommended that in the future you compute the inverse in ZCA.fit() instead, by passing it store_inverse=True. | |
warnings.warn("inv_P_ was None. Computing " | |
........SSSSSSS.SSSSS../usr/local/src/pylearn2/pylearn2/models/kmeans.py:21: UserWarning: Install milk ( http://packages.python.org/milk/ ) | |
It has a better k-means implementation. Falling back to | |
our own really slow implementation. | |
our own really slow implementation. """) | |
/usr/local/src/pylearn2/pylearn2/models/kmeans.py:21: UserWarning: Install milk ( http://packages.python.org/milk/ ) | |
It has a better k-means implementation. Falling back to | |
our own really slow implementation. | |
our own really slow implementation. """) | |
.ERROR (pylearn2.devtools.nan_guard): Inf detected | |
ERROR (pylearn2.devtools.nan_guard): Big value detected | |
ERROR (pylearn2.devtools.nan_guard): In an input | |
ERROR (pylearn2.devtools.nan_guard): Inputs: | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ inf, inf, inf, inf, inf], | |
[ inf, inf, inf, inf, inf], | |
[ inf, inf, inf, inf, inf]])] | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ 0.23271284, -1.72441167, 0.10392659, 0.75127891, -2.01131259, | |
-0.21728208, -0.58227592], | |
[-0.8369439 , -0.20443899, -0.2864808 , 1.92397269, 1.6814356 , | |
-0.19086308, 0.2061233 ], | |
[ 2.15787953, 0.74631824, 0.89308301, 1.20570748, 0.01299836, | |
-0.07539162, -0.46493743], | |
[-0.89114511, -1.07780474, 0.55562017, -0.36061101, -0.72670668, | |
-1.35736726, 1.09985907], | |
[-0.14674666, 1.55485195, 0.01010881, -0.83636693, 0.873889 , | |
-0.53304478, 0.28170689]])] | |
ERROR (pylearn2.devtools.nan_guard): Node: | |
ERROR (pylearn2.devtools.nan_guard): Dot22(<TensorType(float64, matrix)>, <TensorType(float64, matrix)>) | |
ERROR (pylearn2.devtools.nan_guard): NaN detected | |
/opt/conda/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:319: RuntimeWarning: All-NaN slice encountered | |
warnings.warn("All-NaN slice encountered", RuntimeWarning) | |
/opt/conda/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:220: RuntimeWarning: All-NaN axis encountered | |
warnings.warn("All-NaN axis encountered", RuntimeWarning) | |
ERROR (pylearn2.devtools.nan_guard): In an input | |
ERROR (pylearn2.devtools.nan_guard): Inputs: | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ nan, nan, nan, nan, nan], | |
[ nan, nan, nan, nan, nan], | |
[ nan, nan, nan, nan, nan]])] | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ 0.23271284, -1.72441167, 0.10392659, 0.75127891, -2.01131259, | |
-0.21728208, -0.58227592], | |
[-0.8369439 , -0.20443899, -0.2864808 , 1.92397269, 1.6814356 , | |
-0.19086308, 0.2061233 ], | |
[ 2.15787953, 0.74631824, 0.89308301, 1.20570748, 0.01299836, | |
-0.07539162, -0.46493743], | |
[-0.89114511, -1.07780474, 0.55562017, -0.36061101, -0.72670668, | |
-1.35736726, 1.09985907], | |
[-0.14674666, 1.55485195, 0.01010881, -0.83636693, 0.873889 , | |
-0.53304478, 0.28170689]])] | |
ERROR (pylearn2.devtools.nan_guard): Node: | |
ERROR (pylearn2.devtools.nan_guard): Dot22(<TensorType(float64, matrix)>, <TensorType(float64, matrix)>) | |
ERROR (pylearn2.devtools.nan_guard): Big value detected | |
ERROR (pylearn2.devtools.nan_guard): In an input | |
ERROR (pylearn2.devtools.nan_guard): Inputs: | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ 1.00000000e+20, 1.00000000e+20, 1.00000000e+20, | |
1.00000000e+20, 1.00000000e+20], | |
[ 1.00000000e+20, 1.00000000e+20, 1.00000000e+20, | |
1.00000000e+20, 1.00000000e+20], | |
[ 1.00000000e+20, 1.00000000e+20, 1.00000000e+20, | |
1.00000000e+20, 1.00000000e+20]])] | |
ERROR (pylearn2.devtools.nan_guard): var | |
ERROR (pylearn2.devtools.nan_guard): <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): A. <TensorType(float64, matrix)> | |
ERROR (pylearn2.devtools.nan_guard): val | |
ERROR (pylearn2.devtools.nan_guard): [array([[ 0.23271284, -1.72441167, 0.10392659, 0.75127891, -2.01131259, | |
-0.21728208, -0.58227592], | |
[-0.8369439 , -0.20443899, -0.2864808 , 1.92397269, 1.6814356 , | |
-0.19086308, 0.2061233 ], | |
[ 2.15787953, 0.74631824, 0.89308301, 1.20570748, 0.01299836, | |
-0.07539162, -0.46493743], | |
[-0.89114511, -1.07780474, 0.55562017, -0.36061101, -0.72670668, | |
-1.35736726, 1.09985907], | |
[-0.14674666, 1.55485195, 0.01010881, -0.83636693, 0.873889 , | |
-0.53304478, 0.28170689]])] | |
ERROR (pylearn2.devtools.nan_guard): Node: | |
ERROR (pylearn2.devtools.nan_guard): Dot22(<TensorType(float64, matrix)>, <TensorType(float64, matrix)>) | |
.................../usr/local/src/pylearn2/pylearn2/expr/tests/test_normalize.py:73: UserWarning: TODO: add test for the CudaConvnet version. | |
warnings.warn("TODO: add test for the CudaConvnet version.") | |
........../usr/local/src/pylearn2/pylearn2/expr/tests/test_probabilistic_max_pooling.py:256: UserWarning: TODO: make sampling tests run on c01b format of pooling. | |
warnings.warn("TODO: make sampling tests run on c01b format of pooling.") | |
.............................................................SSSSSSSSSSSS............./usr/local/src/pylearn2/pylearn2/datasets/dense_design_matrix.py:1478: UserWarning: It looks like DefaultViewConverter.axes has been changed directly, please use the set_axes() method instead. | |
"instead." % self.__class__.__name__) | |
......./usr/local/src/pylearn2/pylearn2/models/dbm/layer.py:2051: UserWarning: GaussianVisLayer math very faith based, need to finish working through gaussian.lyx | |
warnings.warn("GaussianVisLayer math very faith based, need to finish working through gaussian.lyx") | |
.............../usr/local/src/pylearn2/pylearn2/models/tests/test_dropout.py:17: UserWarning: | |
TODO: add test that dropout_fprop with all include probabilities and scales set | |
to 1 is equivalent to fprop. | |
TODO: add a test file to the corresponding cost module and make sure that the | |
dropout cost with everything set to 1 is equivalent to the Default cost | |
""") | |
...S.S..............................S........../usr/local/src/pylearn2/pylearn2/models/rbm.py:591: UserWarning: The parameter 'updates' of theano.function() expects an OrderedDict, got <type 'dict'>. Using a standard dictionary here results in non-deterministic behavior. You should use an OrderedDict if you are using Python 2.7 (theano.compat.OrderedDict for older python), or use a list of (shared, update) pairs. Do not just convert your dictionary to this type before the call as the conversion will still be non-deterministic. | |
self.learn_func = theano.function([minibatch], updates=updates) | |
..../opt/conda/lib/python2.7/site-packages/Theano-0.7.0-py2.7.egg/theano/gof/cmodule.py:293: RuntimeWarning: numpy.ndarray size changed, may indicate binary incompatibility | |
rval = __import__(module_name, {}, {}, [module_name]) | |
..........S.................................................................................................................S............................................SSSSSSSSSSSS...SSSSS/usr/local/src/pylearn2/pylearn2/training_algorithms/sgd.py:590: UserWarning: The channel that has been chosen for monitoring is: objective. | |
'monitoring is: ' + str(self.channel_name) + '.') | |
..SS./usr/local/src/pylearn2/pylearn2/train.py:66: UserWarning: save_path specified but save_freq is 0 (never save). Is this intentional? | |
warnings.warn('save_path specified but save_freq is 0 ' | |
......S...........................E...............................................................................................................S................/usr/local/src/pylearn2/pylearn2/tests/test_monitor.py:298: UserWarning: TODO: add unit test that iterators uneven property is set correctly. | |
warnings.warn("TODO: add unit test that iterators uneven property is set correctly.") | |
/usr/local/src/pylearn2/pylearn2/tests/test_monitor.py:333: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future. | |
assert None not in batches | |
..............S.. | |
====================================================================== | |
ERROR: Failure: ImportError (Import of Cython module failed. Please make sure you have run 'python setup.py develop' in the pylearn2 directory | |
Original exception: | |
ImportError: No module named _window_flip) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/opt/conda/lib/python2.7/site-packages/nose/loader.py", line 414, in loadTestsFromName | |
addr.filename, addr.module) | |
File "/opt/conda/lib/python2.7/site-packages/nose/importer.py", line 47, in importFromPath | |
return self.importFromDir(dir_path, fqname) | |
File "/opt/conda/lib/python2.7/site-packages/nose/importer.py", line 94, in importFromDir | |
mod = load_module(part_fqname, fh, filename, desc) | |
File "/usr/local/src/pylearn2/pylearn2/train_extensions/tests/test_window_flip.py", line 5, in <module> | |
from pylearn2.train_extensions.window_flip import WindowAndFlip | |
File "/usr/local/src/pylearn2/pylearn2/train_extensions/window_flip.py", line 16, in <module> | |
reraise_as(ImportError("Import of Cython module failed. Please make sure " | |
File "/usr/local/src/pylearn2/pylearn2/utils/exc.py", line 90, in reraise_as | |
six.reraise(type(new_exc), new_exc, orig_exc_traceback) | |
File "/usr/local/src/pylearn2/pylearn2/train_extensions/window_flip.py", line 13, in <module> | |
from ..utils._window_flip import random_window_and_flip_c01b | |
ImportError: Import of Cython module failed. Please make sure you have run 'python setup.py develop' in the pylearn2 directory | |
Original exception: | |
ImportError: No module named _window_flip | |
---------------------------------------------------------------------- | |
Ran 696 tests in 1761.151s | |
FAILED (SKIP=96, errors=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment