Skip to content

Instantly share code, notes, and snippets.

@Tadge-Analytics
Last active August 25, 2024 05:33
Show Gist options
  • Save Tadge-Analytics/b9377455891f1f02750dc0c3681f1063 to your computer and use it in GitHub Desktop.
Save Tadge-Analytics/b9377455891f1f02750dc0c3681f1063 to your computer and use it in GitHub Desktop.
---
title: "Expense Analyser"
output:
flexdashboard::flex_dashboard:
navbar:
- { title: "About", href: "https://www.tadge-analytics.com.au", align: right }
runtime: shiny
---
```{r setup, include=FALSE}
library(tidyverse)
library(plotly)
library(lubridate)
library(openxlsx)
library(DT)
library(flexdashboard)
# library(rhandsontable)
library(shinyWidgets)
library(googlesheets4)
sheets_auth(email = "[email protected]")
# might need to update the widgets where possible
# shinyWidgets::shinyWidgetsGallery()
```
Transactions {data-orientation=rows}
=====================================
SideBar {.sidebar}
---
```{r}
# change this to a slider
fileInput("cba",
"CBA",
multiple = FALSE,
accept = c("text/csv",
"text/comma-separated-values, text/plain",
".csv"))
fileInput("ing",
"ING",
multiple = FALSE,
accept = c("text/csv",
"text/comma-separated-values, text/plain",
".csv"))
# fileInput("up_bank",
# "UpBank",
# multiple = FALSE,
# accept = c("text/csv",
# "text/comma-separated-values, text/plain",
# ".csv"))
fileInput("paypal",
"Paypal",
multiple = FALSE,
accept = c("text/csv",
"text/comma-separated-values, text/plain",
".csv"))
#
#
# fileInput("cash",
# "Cash",
# multiple = FALSE,
# accept = c("text/csv",
# "text/comma-separated-values, text/plain",
# ".csv"))
#
#
# fileInput("manual",
# "Manual entry",
# multiple = FALSE,
# accept = c("text/csv",
# "text/comma-separated-values, text/plain",
# ".csv"))
##############################################
# use these below by default
fileInput("categorisation_file",
"Retrieve from Excel",
multiple = FALSE,
accept = c(".xlsx"))
downloadHandler(
filename = function() {
"Categorisations done.xlsx"
},
content = function(file) {
my_workbook <- createWorkbook()
addWorksheet(
wb = my_workbook,
sheetName = "Categorisations"
)
writeDataTable(
my_workbook,
sheet = "Categorisations",
new_and_already_done_row_items(),
tableStyle = "TableStyleMedium2", withFilter = T
)
setColWidths(my_workbook, "Categorisations", cols = c(1:7), widths = c(8,14,12,74,20,20,20))
addWorksheet(
wb = my_workbook,
sheetName = "Categories"
)
writeDataTable(
my_workbook,
sheet = "Categories",
keywords_newly_created(),
tableStyle = "TableStyleMedium2", withFilter = T
)
setColWidths(my_workbook, "Categories", cols = c(1:4), widths = c(22))
addWorksheet(
wb = my_workbook,
sheetName = "forecast rates"
)
writeDataTable(
my_workbook,
sheet = "forecast rates",
rates_for_saving(),
tableStyle = "TableStyleMedium2", withFilter = T
)
setColWidths(my_workbook, "forecast rates", cols = c(1:9), widths = c(22))
addWorksheet(
wb = my_workbook,
sheetName = "forecast values"
)
writeDataTable(
my_workbook,
sheet = "forecast values",
forecast_table_for_saving() %>%
mutate(Amount = round(Amount, 2)),
tableStyle = "TableStyleMedium2", withFilter = T
)
setColWidths(my_workbook, "forecast values", cols = c(1:7), widths = c(15,15,30,20,12,30,30))
saveWorkbook(my_workbook, file)
})
br()
br()
####################################
# add a toggle
materialSwitch("use_google_sheets", "Source from Googlesheets", status = "success")
textInput("googlesheets_id_entry",
"Googlesheets ID",
value = "19t1yTFn3k7GL2FFPCSbW8Of98P4fItp9wDLUF9b6paM")
actionButton("retrieve_from_google_sheets", "Retrieve (from GS)", icon = icon("download", "fa"))
br()
br()
amount_col_name <- as.symbol("Amount (if different going forward)")
reference_date_col_name <- as.symbol("A reference date -past or future")
limit_prev_col_name <- as.symbol("Irregular schedule transaction limit for forecasting")
blank_rates_table <- tibble(`Category Level1` = NA_character_,
`Category Level2` = NA_character_,
`Category Level3` = NA_character_,
`No plans for it to reoccur` = NA_integer_,
!!limit_prev_col_name := NA_integer_,
`Shedule|Number` = NA_integer_,
`Shedule|Timeframe` = NA_character_,
!!amount_col_name := NA_integer_,
!!reference_date_col_name := NA_integer_)
# upload button
actionButton("upload_to_google_sheets", "Upload (to GS)", icon = icon("upload", "fa"))
# upload back to google sheets
observeEvent(
input$upload_to_google_sheets, {
req(new_and_already_done_row_items()) # take this object and upload it back to googlesheets
req(keywords_newly_created())
req(rates_for_saving())
req(forecast_table_for_saving())
if (nrow(new_and_already_done_row_items()) == 0) {
googlesheets4::write_sheet(
tibble(
data_source = NA_character_,
Date = NA_character_,
Amount = NA_character_,
Description = NA_character_,
Keyword = NA_character_,
`Suggested Category` = NA_character_,
`Category Level1` = NA_character_) %>%
mutate(Date = as.Date(Date),
Amount = as.numeric(Amount)),
ss = input$googlesheets_id_entry, sheet = "Categorisations")
} else {
googlesheets4::write_sheet( new_and_already_done_row_items(), ss = input$googlesheets_id_entry, sheet = "Categorisations")
}
if (nrow(keywords_newly_created()) == 0) {
googlesheets4::write_sheet(
tibble(type = NA_character_,
Keyword = NA_character_,
`Category Level1` = NA_character_,
warning = NA_character_),
ss = input$googlesheets_id_entry, sheet = "Categories")
} else {
googlesheets4::write_sheet( keywords_newly_created(), ss = input$googlesheets_id_entry, sheet = "Categories")
}
if (nrow(rates_for_saving()) == 0) {
googlesheets4::write_sheet(
blank_rates_table,
ss = input$googlesheets_id_entry, sheet = "forecast rates")
} else {
googlesheets4::write_sheet( rates_for_saving(), ss = input$googlesheets_id_entry, sheet = "forecast rates")
}
if (nrow(forecast_table_for_saving()) == 0) {
googlesheets4::write_sheet(tibble(
data_source = NA_character_,
Date = NA_character_,
Amount = NA_character_,
Description = NA_character_,
Keyword = NA_character_,
`Suggested Category` = NA_character_,
`Category Level1` = NA_character_,
`Category Level2` = NA_character_,
`Category Level3` = NA_character_),
ss = input$googlesheets_id_entry, sheet = "forecast values") } else {
googlesheets4::write_sheet( forecast_table_for_saving(), ss = input$googlesheets_id_entry, sheet = "forecast values")
}
})
# switch for only Cats done table
# to make upload / download faster
# googlesheets4::write_sheet(new_and_already_done_row_items(), ss = input$googlesheets_id_entry, sheet = "Categorisations")
# observeEvent(
# input$upload_to_google_sheets, {
# req(new_and_already_done_row_items())
# googlesheets4::write_sheet(new_and_already_done_row_items(), ss = input$googlesheets_id_entry, sheet = "Categorisations")
# })
```
```{r}
blank_table <- tibble(Date = NA_character_,
Amount = NA_character_,
Description = NA_character_,
data_source = NA_character_) %>%
mutate(Date = as.Date(Date),
Amount = as.numeric(Amount)) %>%
slice(0)
# cba
cba <- reactive(if (is.null(input$cba)){
blank_table
} else {
read_csv(input$cba$datapath, col_names = F) %>%
rename(Date = 1, Amount = 2, Description = 3, Balance = 4) %>%
mutate(data_source = "cba",
Date = dmy(Date)) %>%
select(-Balance)
})
# ing
ing <- reactive(if (is.null(input$ing)){
blank_table
} else {
read_csv(input$ing$datapath) %>%
mutate(Credit = as.numeric(Credit),
Debit = as.numeric(Debit),
Amount = coalesce(Credit, Debit),
data_source = "ing",
Date = dmy(Date)) %>%
select(-Credit, -Debit, -Balance)
})
# paypal
paypal <- reactive(if (is.null(input$paypal)){
blank_table
} else {
paypal_import <- read_csv(input$paypal$datapath) %>%
mutate(data_source = "paypal",
Date = dmy(Date)) %>%
rename(Description = Name) %>%
select(-Balance, -`Time zone`, -`Receipt ID`)
# work out international payments aud amounts
aud_amounts <- paypal_import %>%
filter(Currency != "AUD" | Type == "General Currency Conversion") %>%
filter(is.na(Description)) %>%
filter(Currency == "AUD") %>% # these are the AUD values for above
select(Date, Time, Currency, Amount)
# work out international payments desciprtions
descriptions_with_aud_amounts <- paypal_import %>%
filter(Currency != "AUD" | Type == "General Currency Conversion") %>%
filter(!is.na(Description)) %>%
select(-Amount, -Currency) %>%
left_join(aud_amounts, by = c("Date", "Time")) %>%
distinct(Date, Time, .keep_all = T)
# combine non-international with internationals
paypal_import %>%
filter(!(Currency != "AUD" | Type == "General Currency Conversion")) %>%
filter(Type != "Transfer to PayPal account") %>%
filter(Description != "PayPal") %>%
bind_rows(descriptions_with_aud_amounts) %>%
mutate(Description = paste0(Description, " (", Type, ")")) %>%
select(-Time, -Currency, -Type, -Status)
})
# up_bank
#
# up_bank <- reactive(if (is.null(input$up_bank)){
#
# blank_table
#
# } else {
#
# read_csv(input$up_bank$datapath) %>%
# transmute(Date = as.Date(Time),
# Description = paste0(Payee, "|", `Transaction Type`),
# Amount = `Total (AUD)`,
# data_source = "upbank")
#
# })
# cash
#
# cash <- reactive(if (is.null(input$cash)){
#
# blank_table
#
# } else {
#
# read_csv(input$cba$datapath) %>%
# mutate(Date = dmy(Date),
# data_source = "cash")
#
# })
# manual entry
#
# manual <- reactive(if (is.null(input$manual)){
#
# blank_table
#
# } else {
#
# read_csv(input$manual$datapath) %>%
# mutate(Date = dmy(Date),
# data_source = "manual")
# })
# combine all transaction sources
combined_import1 <- reactive(bind_rows(cba(),
ing(),
paypal(),
# cash(),
# up_bank()
))
# create seperate rows for cashouts that happened with purchases
purchase_cash_outs <- reactive(combined_import1() %>%
filter(str_detect(Description, "Cash Out")) %>%
{if (nrow(.) == 0) {.} else {
mutate(., row_id = row_number()) %>%
uncount(2) %>%
group_by(row_id) %>%
mutate(cash_out_or_purchase = c("cash_out", "purchase")) %>%
ungroup() %>%
separate(Description, "\\$", into = c("cash_out_amount", "second"), remove = F, extra = "merge") %>%
separate(second, "\\.", into = c("cash_out_amount", "second"), extra = "merge") %>%
mutate(cash_out_amount = if_else(is.na(cash_out_amount), Amount, -as.numeric(cash_out_amount)),
purchase_amount = Amount - cash_out_amount,
Amount = if_else(cash_out_or_purchase == "cash_out", cash_out_amount, purchase_amount),
Description = paste0("(", cash_out_or_purchase, ") ", Description)) %>%
select(Date, Description, Amount, data_source) %>%
filter(Amount != 0)
}})
combined_import <- reactive(bind_rows(combined_import1() %>% filter(!str_detect(Description, "Cash Out")),
purchase_cash_outs()))
blank_categorisations_done <- tibble(
data_source = NA_character_,
Date = NA_character_,
Amount = NA_character_,
Description = NA_character_,
Keyword = NA_character_,
`Suggested Category` = NA_character_,
`Category Level1` = NA_character_) %>%
mutate(Date = as.Date(Date),
Amount = as.numeric(Amount)) %>%
slice(0)
# retrieval of the googlesheets data
google_sheet_cats_done_data <- eventReactive(c(input$retrieve_from_google_sheets,
input$retrieve_from_google_sheets_2), {
if (input$retrieve_from_google_sheets == 0) {NULL} else {
read_sheet(ss = input$googlesheets_id_entry, sheet = "Categorisations", col_types = "c") %>%
mutate(Date = as.Date(Date),
Amount = as.numeric(Amount),
`Suggested Category` = as.character(`Suggested Category`),
`Category Level1` = as.character(`Category Level1`),
`Category Level1` = if_else(`Category Level1` == "1", `Suggested Category`, `Category Level1`),
Keyword = trimws(toupper(Keyword)),
`Category Level1` = trimws(toupper(`Category Level1`)))}})
# make this run only when there are values for input$categorisation_file
excel_cats_done_data <- reactive(
if (is.null(input$categorisation_file)) {NULL} else {
readxl::read_excel(input$categorisation_file$datapath, sheet = "Categorisations", col_types = "text") %>%
mutate(Date = as.Date(as.numeric(Date), origin = "1899-12-30"),
Amount = as.numeric(Amount),
`Category Level1` = if_else(`Category Level1` == "1", `Suggested Category`, `Category Level1`),
Keyword = trimws(toupper(Keyword)),
`Category Level1` = trimws(toupper(`Category Level1`)))
})
# logic for assigning object(s)
categorisations_done_upload <- reactive(
if (is.null(input$categorisation_file) & input$retrieve_from_google_sheets == 0) {
blank_categorisations_done} else {
if (!is.null(input$categorisation_file) & !input$use_google_sheets) {
excel_cats_done_data()
} else {
google_sheet_cats_done_data()
}})
blank_categories_data <- tibble(
Keyword = NA_character_,
`Category Level1` = NA_character_) %>%
slice(0)
excel_categories_data <- reactive(
if (is.null(input$categorisation_file)) {NULL} else {
readxl::read_excel(input$categorisation_file$datapath, sheet = "Categories", col_types = "text") %>%
filter(!is.na(Keyword)) %>%
select(-type) %>%
mutate(Keyword = trimws(toupper(Keyword)),
`Category Level1` = trimws(toupper(`Category Level1`)))
})
googlesheets_categories_data <- eventReactive(c(input$retrieve_from_google_sheets,
input$retrieve_from_google_sheets_2), {
if (input$retrieve_from_google_sheets == 0) {NULL} else {
read_sheet(ss = input$googlesheets_id_entry, sheet = "Categories", col_types = "c") %>%
filter(!is.na(Keyword)) %>%
select(-type) %>%
mutate(Keyword = trimws(toupper(Keyword)),
`Category Level1` = trimws(toupper(`Category Level1`)))}})
categories_upload <- reactive(
if (is.null(input$categorisation_file) & input$retrieve_from_google_sheets == 0) {
blank_categories_data} else {
if (!is.null(input$categorisation_file) & !input$use_google_sheets) {
excel_categories_data()
} else {
googlesheets_categories_data()
}})
excel_rates_table <- reactive(
if (is.null(input$categorisation_file)) {NULL} else {
readxl::read_excel(input$categorisation_file$datapath, sheet = "forecast rates", col_types = "text") %>%
mutate(`Category Level1` = trimws(toupper(`Category Level1`)),
`Category Level2` = trimws(toupper(`Category Level2`)),
`Category Level3` = trimws(toupper(`Category Level3`)))})
googlesheets_rates_table <- eventReactive(c(input$retrieve_from_google_sheets,
input$retrieve_from_google_sheets_2), {
if (input$retrieve_from_google_sheets == 0) {NULL} else {
read_sheet(ss = input$googlesheets_id_entry, sheet = "forecast rates", col_types = "c") %>%
mutate(`Category Level1` = trimws(toupper(`Category Level1`)),
`Category Level2` = trimws(toupper(`Category Level2`)),
`Category Level3` = trimws(toupper(`Category Level3`)))}})
rates_import <- reactive(
if (is.null(input$categorisation_file) & input$retrieve_from_google_sheets == 0) {
blank_rates_table} else {
if (!is.null(input$categorisation_file) & !input$use_google_sheets) {
excel_rates_table()
} else {
googlesheets_rates_table()
}})
# process uploaded files
combine_transactions_with_historical <- function(combined_import,
categorisations_done_upload,
categories_upload) {
# preparing the update of the keywords + categories table (second sheet)
# still present in cats done
existing_keywords <- categories_upload %>%
distinct(Keyword) %>%
semi_join(categorisations_done_upload, by = "Keyword") %>%
mutate(type = "existing keyword")
# No longer present in cats done sheet?
historical_keywords <- categories_upload %>%
distinct(Keyword) %>%
anti_join(categorisations_done_upload, by = "Keyword") %>%
mutate(type = "historical keyword")
# new (only in cats done records)
new_keywords <- categorisations_done_upload %>%
distinct(Keyword) %>%
filter(!is.na(Keyword)) %>%
anti_join(categories_upload, by = "Keyword") %>%
mutate(type = "new keyword")
initial_all_keywords <- bind_rows(existing_keywords,
historical_keywords,
new_keywords) %>%
arrange(Keyword)
initial_previous_keywords <- initial_all_keywords %>%
distinct(Keyword) %>%
group_by(Keyword) %>%
{if (nrow(.) == 0) mutate(., test = NA) else crossing(., test = .$Keyword)} %>%
{if (nrow(.) == 1) mutate(., contained = NA) else
filter(., Keyword != test) %>%
mutate(contained = str_detect(test, fixed(Keyword)))} %>%
mutate(seconded = if_else(
any(contained) |
str_length(Keyword) < 4,
1,
0)) %>%
select(-test, -contained) %>%
distinct(Keyword, .keep_all = T) # we don't want to have keywords with multiple categories
# what are going to be the suggested categories for each keyword
cats_done_with_level1 <-
categorisations_done_upload %>%
filter(!is.na(`Category Level1`)) %>%
count(Keyword, `Category Level1`) %>%
group_by(Keyword) %>%
mutate(percent_of_total = n/sum(n)) %>%
arrange(desc(percent_of_total)) %>%
slice(1) %>%
mutate(warning = if_else(percent_of_total != 1, "Multiple Categories", "Single Category")) %>%
select(-n, -percent_of_total)
categories_with_level1 <-
categories_upload %>%
filter(!is.na(`Category Level1`)) %>%
group_by(Keyword) %>%
mutate(total_rows = n()) %>%
slice(1) %>% # take the one with the level 2, if it exists
mutate(warning = if_else(total_rows != 1, "Multiple Categories", "Single Category")) %>%
select(-total_rows) %>%
bind_rows(cats_done_with_level1) %>%
distinct(Keyword, .keep_all = T) %>%
ungroup()
all_keywords <- initial_all_keywords %>%
select(type, Keyword) %>%
left_join(categories_with_level1, by = "Keyword")
previous_keywords <- initial_previous_keywords %>%
left_join(categories_with_level1 %>%
transmute(Keyword, `Suggested Category` = `Category Level1`)
, by = "Keyword")
rm(list=setdiff(ls(), c("all_keywords", # previously established Level2 input
"previous_keywords", # keywords used for detection in the new
"combined_import", # imported new transactions
"categorisations_done_upload" # the imported cats done
)))
## 3. detect presence of keywords.R (~110 lines) ----
# categorisations which have had cats defined
done_and_have_defined_cats <- categorisations_done_upload %>%
filter(!is.na(`Category Level1`))
# categorisations with no cats defined
done_but_no_defined_cats <- categorisations_done_upload %>%
filter(is.na(`Category Level1`))
# do any of our transaction descriptions include "category keywords"
items_with_keyword_options <- combined_import %>%
anti_join(done_and_have_defined_cats,
by = c("Date", "Amount", "Description", "data_source")) %>%
# remove any that already appear in the cats done document
# but weren't defined yet, as there may have been details added
anti_join(done_but_no_defined_cats,
by = c("Date", "Amount", "Description", "data_source")) %>%
bind_rows(done_but_no_defined_cats %>%
select(-Keyword, -`Suggested Category`, -`Category Level1`)) %>% # because we are going to be re-estimating these
mutate(row_id = row_number()) %>% # we want to be careful not to duplicate rows in this process
{if(nrow(previous_keywords) == 0)
mutate(., Keyword = "~~~test", seconded = NA) else # need to put in a "something" which will certainly not be detected
crossing(., previous_keywords %>% select(Keyword, seconded))} %>%
mutate(contains_test = str_detect(toupper(Description), fixed(Keyword)),
contains_test = if_else(is.na(contains_test), FALSE, contains_test))
# no keyword matches
no_keyword_matches <- items_with_keyword_options %>%
group_by(row_id) %>%
filter(!any(contains_test == TRUE)) %>%
distinct(row_id, .keep_all = T) %>%
ungroup() %>%
select(-Keyword, -seconded, -contains_test, -row_id)
# received keyword matches
keyword_match <- items_with_keyword_options %>%
filter(contains_test == TRUE) %>%
select(-contains_test) %>%
group_by(row_id) %>%
mutate(count = n(),
sum_of_seconded = sum(seconded, na.rm = T),
no_worries = count - sum_of_seconded == 1)
# single keyword match
single_keyword_match <- keyword_match %>%
filter(count == 1) %>%
ungroup() %>%
select(-no_worries, -seconded, -count, -sum_of_seconded, -row_id)
# Has mutiple keyword matches
# only 1 non-Seconded
mutiple_keyword_matches_but_1_good <- keyword_match %>%
filter(count > 1 & no_worries & seconded != 1) %>%
ungroup() %>%
select(-no_worries, -seconded, -count, -sum_of_seconded, -row_id)
# no clear winning match
# (i.e. multiple secondeds or multiple non-secondeds)
# in theory this should be rare
# here... add in:: pick the longest keyword....
no_clear_winning_match <- keyword_match %>%
filter(count > 1 & !no_worries) %>%
select(-no_worries) %>%
distinct(row_id, .keep_all = T) %>%
ungroup() %>%
mutate(Keyword = "_Multiple_") %>%
select(-seconded, -count, -sum_of_seconded, -row_id)
# append them all together
new_and_already_done_row_items <-
bind_rows(no_keyword_matches, # bind all the new rows with their relevant detected keywords
single_keyword_match,
mutiple_keyword_matches_but_1_good,
no_clear_winning_match) %>%
left_join(previous_keywords %>%
select(Keyword, `Suggested Category`),
by = "Keyword") %>%
# then I connect these with all the other data
# i.e the previously categorised in cats done
bind_rows(categorisations_done_upload %>%
filter(!is.na(`Category Level1`))) %>%
arrange(desc(Date)) %>%
select(data_source, Date, Amount, Description, `Suggested Category`, Keyword, `Category Level1`, everything())
rm(list=setdiff(ls(), c("all_keywords",
"new_and_already_done_row_items")))
return(new_and_already_done_row_items)
}
# process uploaded files
generate_keywords_sheet <- function(categorisations_done_upload,
categories_upload) {
# preparing the update of the keywords + categories table (second sheet)
# still present in cats done
existing_keywords <- categories_upload %>%
distinct(Keyword) %>%
semi_join(categorisations_done_upload, by = "Keyword") %>%
mutate(type = "existing keyword")
# No longer present in cats done sheet?
historical_keywords <- categories_upload %>%
distinct(Keyword) %>%
anti_join(categorisations_done_upload, by = "Keyword") %>%
mutate(type = "historical keyword")
# new (only in cats done records)
new_keywords <- categorisations_done_upload %>%
distinct(Keyword) %>%
filter(!is.na(Keyword)) %>%
anti_join(categories_upload, by = "Keyword") %>%
mutate(type = "new keyword")
initial_all_keywords <-
bind_rows(existing_keywords,
historical_keywords,
new_keywords) %>%
arrange(Keyword)
# what are going to be the suggested categories for each keyword
cats_done_with_level1 <-
categorisations_done_upload %>%
filter(!is.na(`Category Level1`)) %>%
count(Keyword, `Category Level1`) %>%
group_by(Keyword) %>%
mutate(percent_of_total = n/sum(n)) %>%
arrange(desc(percent_of_total)) %>%
slice(1) %>%
mutate(warning = if_else(percent_of_total != 1, "Multiple Categories", "Single Category")) %>%
select(-n, -percent_of_total)
categories_with_level1 <-
categories_upload %>%
filter(!is.na(`Category Level1`)) %>%
group_by(Keyword) %>%
mutate(total_rows = n()) %>%
slice(1) %>% # take the one with the level 2, if it exists
mutate(warning = if_else(total_rows != 1, "Multiple Categories", "Single Category")) %>%
select(-total_rows) %>%
bind_rows(cats_done_with_level1) %>%
distinct(Keyword, .keep_all = T) %>%
ungroup()
all_keywords <- initial_all_keywords %>%
select(type, Keyword) %>%
left_join(categories_with_level1, by = "Keyword")
return(all_keywords)
}
############################################################
# Forecasting functions
generate_rates_table <- function(new_and_already_done_row_items, rates_import, forecast_horison_days = 370) {
amount_col_name <- as.symbol("Amount (if different going forward)")
reference_date_col_name <- as.symbol("A reference date -past or future")
limit_prev_col_name <- as.symbol("Irregular schedule transaction limit for forecasting")
# get columns to the right type and add forcast horizon
# based on the latest date from all the transactions
rates_import %>%
right_join(
new_and_already_done_row_items %>%
distinct(`Category Level1`) %>%
filter(`Category Level1` != "IGNORE")
, by = "Category Level1") %>%
distinct(`Category Level1`, .keep_all = T) %>%
mutate(`Shedule|Number` = as.numeric(`Shedule|Number`),
`No plans for it to reoccur` = as.numeric(`No plans for it to reoccur`),
!!reference_date_col_name := as.Date(as.numeric(!!reference_date_col_name), origin = "1899-12-30"),
!!amount_col_name := as.numeric(!!amount_col_name),
`Shedule|Number` = if_else(is.na(`Shedule|Number`), 1, `Shedule|Number`),
forecast_horizon_final_date = max(new_and_already_done_row_items$Date) + forecast_horison_days)
}
regenerate_schedule_table <- function(rates, forecast_horison_days = 370) {
# certain forecast values will have to only utilise a set number or
# (from a certain date) of historical transactions
# to determine their on-going rates.
amount_col_name <- as.symbol("Amount (if different going forward)")
reference_date_col_name <- as.symbol("A reference date -past or future")
limit_prev_col_name <- as.symbol("Irregular schedule transaction limit for forecasting")
limiting_transactions <- rates %>%
filter(!is.na(!!limit_prev_col_name)) %>%
mutate(what_is_it = case_when(is.na(as.numeric(!!limit_prev_col_name)) ~ "not a number",
as.numeric(!!limit_prev_col_name) <= 1000 ~ "less than 1000",
as.numeric(!!limit_prev_col_name) > 1000 ~ "greater then 1000",
TRUE ~ "other"),
limit_by_date = case_when(what_is_it == "not a number" ~ dmy(!!limit_prev_col_name),
what_is_it == "greater then 1000" ~ as.Date(as.numeric(!!limit_prev_col_name), origin = "1899-12-30")),
limit_by_last_transactions = if_else(what_is_it == "less than 1000", as.numeric(!!limit_prev_col_name), NA_real_)) %>%
select(`Category Level1`, limit_by_last_transactions, limit_by_date)
rates %>%
left_join(
limiting_transactions %>%
mutate(replacement_col = if_else(is.na(limit_by_last_transactions), format(limit_by_date, "%d/%m/%Y"), as.character(limit_by_last_transactions))) %>%
select(`Category Level1`, replacement_col)
, by = "Category Level1") %>%
{if (nrow(.) == 0) {.} else {mutate(., !!limit_prev_col_name := if_else(!is.na(replacement_col), replacement_col, !!limit_prev_col_name))}} %>%
select(-replacement_col, -forecast_horizon_final_date) %>%
mutate(`Shedule|Number` = if_else(`Shedule|Number` == 1, NA_real_, `Shedule|Number`)) %>%
arrange(`Shedule|Timeframe`, `No plans for it to reoccur`, `Category Level1`)
}
##############################################################################
create_forecast_values <- function(new_and_already_done_row_items, rates, forecast_horison_days = 370) {
# take all transactions
# filter out the IGNORE cats, exclude those cats that have been specified to not recur
# if the cat1 isn't entered, label it UNCATEGORISED
amount_col_name <- as.symbol("Amount (if different going forward)")
reference_date_col_name <- as.symbol("A reference date -past or future")
limit_prev_col_name <- as.symbol("Irregular schedule transaction limit for forecasting")
initial_summary <- new_and_already_done_row_items %>%
# don't think we need this anymore
mutate(`Category Level1` = case_when(is.na(`Category Level1`) & Amount < 0 ~ "UNCATEGORISED EXPENSE",
is.na(`Category Level1`) & Amount > 0 ~ "UNCATEGORISED INCOME",
TRUE ~ `Category Level1`)) %>%
# nor this....
filter(`Category Level1` != "IGNORE") %>%
filter(data_source != "cash") %>%
anti_join(rates %>% filter(!is.na(`No plans for it to reoccur`)), by = "Category Level1") %>%
arrange(desc(Date)) %>%
group_by(`Category Level1`) %>%
mutate(min_date = min(Date),
max_date = max(Date),
days_between_min_and_max = as.numeric(max_date - min_date),
new_cat_level1 = if_else(days_between_min_and_max == 0,
"CAT1 BUCKET", `Category Level1`)) %>%
ungroup()
# specified forecasts that exist in the transactions
# restrict to only those with shedules entered, already.
# keep only the latest entry (by the distinct())
specified_forecasts <- initial_summary %>%
inner_join(rates %>% filter(!is.na(`Shedule|Timeframe`)), by = "Category Level1") %>%
distinct(`Category Level1`, .keep_all = T) %>%
mutate(on_going_amount = if_else(!is.na(!!amount_col_name), !!amount_col_name, Amount),
latest_date = if_else(!is.na(!!reference_date_col_name), !!reference_date_col_name, Date),
latest_date = if_else(latest_date >= Date, latest_date, Date)) %>%
select(latest_date, `Category Level1`, `Shedule|Number`, `Shedule|Timeframe`, on_going_amount, forecast_horizon_final_date) %>%
# but what if our scheduled item didn't exist in the transactions?
# Let's make it so we can add these future schedules in
bind_rows(
rates %>%
filter(!is.na(!!reference_date_col_name)) %>%
anti_join(initial_summary, by = "Category Level1") %>%
mutate(latest_date = !!reference_date_col_name,
on_going_amount = !!amount_col_name) %>%
select(latest_date, `Category Level1`, `Shedule|Number`, `Shedule|Timeframe`, on_going_amount, forecast_horizon_final_date)
) %>%
mutate(Date = map2(latest_date + 1, forecast_horizon_final_date, ~seq.Date(.x, .y, 1))) %>%
unnest(Date) %>%
group_by(`Category Level1`) %>%
mutate(months_out = map2_int(latest_date, Date, ~length(seq(.x, .y, by = "month"))-1L),
total_days = row_number()) %>%
group_by(`Category Level1`, months_out) %>%
mutate(days_out = row_number()) %>%
group_by(`Category Level1`) %>%
mutate(weeks_out = total_days %/% 7,
days_out = if_else(months_out == 0, days_out, days_out - 1L),
day_in_week = total_days - weeks_out*7) %>%
mutate(keep_row = case_when(`Shedule|Timeframe` == "Year" ~ months_out == 12 & days_out == 0,
`Shedule|Timeframe` == "Month" ~ days_out == 0,
`Shedule|Timeframe` == "Week" ~ day_in_week == 0,
`Shedule|Timeframe` == "Day" ~ TRUE)) %>%
filter(keep_row) %>%
mutate(multiple_of_rate = row_number() %/% `Shedule|Number`) %>%
group_by(`Category Level1`, multiple_of_rate) %>%
mutate(keep_row = multiple_of_rate != 0 & row_number() == 1) %>%
filter(keep_row) %>%
ungroup() %>%
# here is where the cat levels are being restricted
select(Date, `Category Level1`, Amount = on_going_amount) %>%
mutate(data_source = "FORECAST",
Description = "FIXED SCHEDULE")
# certain forecast values will have to only utilise a set number or (from a certain date) of historical transactions
# to determine their on-going rates.
limiting_transactions <- rates %>%
filter(!is.na(!!limit_prev_col_name)) %>%
mutate(what_is_it = case_when(is.na(as.numeric(!!limit_prev_col_name)) ~ "not a number",
as.numeric(!!limit_prev_col_name) <= 1000 ~ "less than 1000",
as.numeric(!!limit_prev_col_name) > 1000 ~ "greater then 1000",
TRUE ~ "other"),
limit_by_date = case_when(what_is_it == "not a number" ~ dmy(!!limit_prev_col_name),
what_is_it == "greater then 1000" ~ as.Date(as.numeric(!!limit_prev_col_name), origin = "1899-12-30")),
limit_by_last_transactions = if_else(what_is_it == "less than 1000", as.numeric(!!limit_prev_col_name), NA_real_)) %>%
select(`Category Level1`, limit_by_last_transactions, limit_by_date)
# now let's handle those transactions that do not have schedules
# first filter out those transactions which the forecast is not going to be based on
grouped_amounts <- initial_summary %>%
anti_join(specified_forecasts, by = "Category Level1") %>%
left_join(limiting_transactions, by = "Category Level1") %>% # do I need to add a group_by here, for the row_number step below?
mutate(within_range_filter = case_when(!is.na(limit_by_date) ~ Date >= limit_by_date,
!is.na(limit_by_last_transactions) ~ row_number() <= limit_by_last_transactions,
TRUE ~ TRUE)) %>%
filter(within_range_filter) %>%
select(-within_range_filter) %>%
group_by(new_cat_level1) %>%
mutate(is_max_date = Date == max(Date)) %>%
summarise(total_spend_prior_to_latest_day = sum(Amount[is_max_date == F]),
min_date = min(Date),
max_date = max(Date),
days_between_min_and_max = as.numeric(max_date - min_date),
spend_per_day = total_spend_prior_to_latest_day/days_between_min_and_max)
total_for_bucket <- grouped_amounts %>%
filter(new_cat_level1 == "CAT1 BUCKET") %>%
select(new_cat_level1, spend_per_day)
# what are the overall contributions of each cat level 1 to the CAT1 Bucket?
bucket_cat1_proportions <- initial_summary %>%
anti_join(specified_forecasts, by = "Category Level1") %>%
filter(new_cat_level1 == "CAT1 BUCKET") %>%
group_by(new_cat_level1, `Category Level1`) %>%
summarise(amount_per_cat1 = sum(Amount)) %>%
left_join(total_for_bucket, by = "new_cat_level1") %>%
mutate(total_in_bucket = sum(amount_per_cat1),
proportion = amount_per_cat1/total_in_bucket,
proportional_spend_per_day = spend_per_day * proportion) %>%
ungroup() %>%
select(new_cat_level1, `Category Level1`, proportional_spend_per_day)
grouped_amounts %>%
left_join(bucket_cat1_proportions, by = "new_cat_level1") %>%
mutate(`Category Level1` = if_else(is.na(`Category Level1`), new_cat_level1, `Category Level1`),
Amount = if_else(is.na(proportional_spend_per_day), spend_per_day, proportional_spend_per_day)) %>%
mutate(data_source = "FORECAST",
Description = if_else(new_cat_level1 == "CAT1 BUCKET", "BUCKETED ESTIMATE", "CATEGORY ESTIMATE"),
max_of_all_dates = max(max_date),
Date = map2(max_date + 1, max_of_all_dates + forecast_horison_days, ~seq.Date(.x, .y, 1))) %>%
unnest(Date) %>%
select(data_source, Date, `Category Level1`, Description, Amount) %>%
bind_rows(specified_forecasts) %>%
arrange(Date)
}
generate_time_period_dates_table <- function(period_of_timeframe, timeframe_type, max_date) {
tibble(review_timeframe_options = period_of_timeframe, timeframe_type_options = timeframe_type) %>%
mutate(current_end_date = case_when(timeframe_type_options != 2 ~ max_date,
review_timeframe_options == 7 | review_timeframe_options == 14 ~ floor_date(max_date, "week", week_start = 1)-1,
review_timeframe_options == 30 ~ floor_date(max_date, "month")-1),
current_start_date = case_when(timeframe_type_options == 1 ~ current_end_date-(review_timeframe_options-1),
review_timeframe_options == 7 ~ floor_date(current_end_date, "week", week_start = 1),
review_timeframe_options == 14 ~ floor_date(current_end_date, "week", week_start = 1)-7,
review_timeframe_options == 30 ~ floor_date(current_end_date, "month")),
current_difference = as.integer(current_end_date - current_start_date),
comparison_end_date = if_else(timeframe_type_options != 3, current_start_date - 1,
case_when(review_timeframe_options == 7 ~ floor_date(current_start_date - 1, "week", week_start = 1) + current_difference,
review_timeframe_options == 14 ~ floor_date(current_start_date - 1, "week", week_start = 1)-7 + current_difference,
review_timeframe_options == 30 ~ floor_date(current_start_date - 1, "month") + current_difference)),
comparison_start_date = case_when(timeframe_type_options == 1 ~ comparison_end_date-(review_timeframe_options-1),
review_timeframe_options == 7 ~ floor_date(comparison_end_date, "week", week_start = 1),
review_timeframe_options == 14 ~ floor_date(comparison_end_date, "week", week_start = 1)-7,
review_timeframe_options == 30 ~ floor_date(comparison_end_date, "month"))
, comparison_difference = as.integer(comparison_end_date - comparison_start_date)) %>%
select(-review_timeframe_options, -timeframe_type_options) %>%
gather(key, value, -current_difference, -comparison_difference)
}
new_and_already_done_row_items <-
reactive(
combined_import() %>%
{if (is.null(input$categorisation_file) & input$retrieve_from_google_sheets == 0)
{
mutate(., 'Suggested Category' = NA_character_, Keyword = NA_character_, `Category Level1` = NA_character_)
} else
{
combine_transactions_with_historical(., categorisations_done_upload(), categories_upload())
} %>%
select(data_source, everything())
})
keywords_newly_created <-
reactive(
generate_keywords_sheet(categorisations_done_upload(),
categories_upload()))
```
Row
-------------------------------------
### # Transactions (by day)
```{r}
all_transactions_plot <- reactive(new_and_already_done_row_items() %>%
mutate(week_date = floor_date(Date, "week", week_start = 1),
week_and_source = paste0(week_date, "|", data_source)) %>%
count(Date, data_source) %>%
ggplot() +
aes(Date, n, fill = data_source, key = Date) +
geom_bar(stat = "identity") +
labs(x = NULL, y = NULL) +
{if (length(min_date_selection()) != 0)
{geom_bar(data = . %>% filter(Date < min_date_selection()[[1]]), stat = "identity", alpha = 0.4, fill = "white", show.legend = FALSE)} else {NULL}}
+
{if (length(min_date_selection()) != 0)
{geom_vline(xintercept = as.numeric(as.Date(min_date_selection()[[1]])), linetype = "dashed")} else {NULL}})
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
all_transactions_plot() %>%
ggplotly(source = "all_transactions_plot") %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
```
Row
-------------------------------------
### # Transactions (by week)
```{r}
min_date_selection <- reactive(event_data("plotly_click", source = "all_transactions_plot")["key"])
line_chart_by_week_plot <- reactive(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
new_and_already_done_row_items() %>%
mutate(week_date = floor_date(Date, "week", week_start = 1),
week_and_source = paste0(week_date, "|", data_source)) %>%
{if (length(min_date_selection()) != 0) {filter(., Date >= min_date_selection()[[1]])} else {.}} %>%
mutate(Date = week_date) %>%
count(week_and_source, Date, data_source) %>%
ggplot() +
aes(Date, n, col = data_source) +
geom_line(stat = "identity") +
geom_point(aes(Date, n, col = data_source, key = week_and_source), stat = "identity") + # see if you can add a slight jitter, so dots on top of each otehr can be clicked
theme(legend.position = "none") +
labs(x = NULL, y = NULL)
})
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
line_chart_by_week_plot() %>%
ggplotly(source = "line_chart_by_week") %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
```
### Transactions
```{r}
min_date_selection_for_transactions <- reactive(event_data("plotly_click", source = "line_chart_by_week")["key"])
# if a click event in the second chart has happend... further restrict
# if Cats done dfile loaded, remove IGNORE rows
data_going_forward <- reactive(
new_and_already_done_row_items() %>%
mutate(week_date = floor_date(Date, "week", week_start = 1),
week_and_source = paste0(week_date, "|", data_source)) %>%
{if (length(min_date_selection()) != 0) {filter(., Date >= min_date_selection()[[1]])} else {.}} %>%
{if (!is.null(input$categorisation_file) | !input$retrieve_from_google_sheets == 0)
{filter(., is.na(`Category Level1`) | `Category Level1` != "IGNORE") %>%
left_join(rates_for_saving() %>%
select(`Category Level1`, `Category Level2`, `Category Level3`)
, by = "Category Level1") %>%
mutate(`Category Level1` = case_when(is.na(`Category Level1`) & Amount < 0 ~ "UNCATEGORISED EXPENSE",
is.na(`Category Level1`) & Amount > 0 ~ "UNCATEGORISED INCOME",
TRUE ~ `Category Level1`),
`Category Level2` = case_when(is.na(`Category Level2`) & Amount < 0 ~ "UNCATEGORISED EXPENSE",
is.na(`Category Level2`) & Amount > 0 ~ "UNCATEGORISED INCOME",
TRUE ~ `Category Level2`),
`Category Level3` = case_when(is.na(`Category Level3`) & Amount < 0 ~ "EXPENSE",
is.na(`Category Level3`) & Amount > 0 ~ "INCOME",
TRUE ~ `Category Level3`)) } else {
mutate(., `Category Level1` = case_when(Amount < 0 ~ "UNCATEGORISED EXPENSE",
Amount > 0 ~ "UNCATEGORISED INCOME"),
`Category Level2` = case_when(Amount < 0 ~ "UNCATEGORISED EXPENSE",
Amount > 0 ~ "UNCATEGORISED INCOME"),
`Category Level3` = case_when(Amount < 0 ~ "EXPENSE",
Amount > 0 ~ "INCOME"))
}}
)
table_for_first_DT <- reactive(
data_going_forward() %>%
{if (length(min_date_selection_for_transactions()) != 0) {filter(., week_and_source == min_date_selection_for_transactions()[[1]])} else {.}} %>%
select(Date, Description, Amount) %>%
arrange(desc(abs(Amount))))
renderDataTable(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
datatable(table_for_first_DT(),
rownames = F,
options =
list(
# dom = "t,
pageLength = 20, scrollY = "300px")) %>%
formatDate("Date", "toDateString") %>%
formatCurrency("Amount", digits = 0) %>%
formatStyle('Amount',
background = styleColorBar(table_for_first_DT()$Amount, 'steelblue'),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center')}}
)
```
Expenses
=====================================
SideBar {.sidebar}
---
```{r}
br()
actionButton("retrieve_from_google_sheets_2", "Retrieve (from GS)", icon = icon("download", "fa"))
review_timeframe_options <- c("Week" = 7, "Fortnight" = 14, "Month or 30 days" = 30, "(All records)" = 0)
timeframe_type_options <- c("Latest" = 1, "Current (up till now)" = 3, "Last complete" = 2)
metric_options <- c("Weekly" = "avg_weekly_spend", "Daily" = "avg_daily_spend")
radioButtons("review_timeframe",
"Review timeframe",
choices = review_timeframe_options,
selected = review_timeframe_options[1])
radioButtons("timeframe_type",
"Timeframe type",
choices = timeframe_type_options,
selected = timeframe_type_options[1])
radioButtons("avg_metric_selection",
"Avg expenditure metric",
choices = metric_options,
selected = metric_options[1])
br()
br()
br()
br()
Level3_options <- reactive(
if (nrow(new_and_already_done_row_items()) == 0) {"(All)"} else {
c("(All)", sort(unique(data_going_forward()$`Category Level3`)))}
)
renderUI(
radioButtons("Level3_options",
"Level3_options",
choices = Level3_options(),
selected = Level3_options()[1])
)
Level2_options <- reactive(if (input$Level3_options == "(All)") {
data_going_forward() %>%
pull(`Category Level2`) %>%
unique() %>%
sort()} else {
data_going_forward() %>%
filter(`Category Level3` == input$Level3_options) %>%
pull(`Category Level2`) %>%
unique() %>%
sort()
})
# this select all box can replace the one below..
# just need to learn all the different options to make it look better.
#
# renderUI(
# if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
#
# pickerInput(
# inputId = "Level2_options",
# label = "Level2_options",
# choices = Level2_options(),
# options = list(
# `actions-box` = TRUE
# ),
# multiple = TRUE
# )})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
actionLink("selectall_1","Select All")
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
checkboxGroupInput("Level2_options",
"Level2_options",
choices = Level2_options(),
selected = Level2_options())
})
observe({
req(input$selectall_1)
req(Level2_options())
if (input$selectall_1 == 0) {NULL} else {if (input$selectall_1 %% 2 == 0) {
updateCheckboxGroupInput(session, "Level2_options","Level2_options", choices = Level2_options(), selected = Level2_options())
} else {
updateCheckboxGroupInput(session, "Level2_options","Level2_options", choices = Level2_options(), selected = NULL)
}}
})
br()
Level1_options <- reactive(if (input$Level3_options == "(All)" & (length(input$Level2_options) == 0 | length(input$Level2_options) == length(Level2_options()))) {
data_going_forward() %>%
pull(`Category Level1`) %>%
unique() %>%
sort()} else {
data_going_forward() %>%
filter(., `Category Level2` %in% input$Level2_options) %>%
pull(`Category Level1`) %>%
unique() %>%
sort()
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
actionLink("selectall_2","Select All")
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
checkboxGroupInput("Level1_options",
"Level1_options",
choices = Level1_options(),
selected = Level1_options())
})
observe({
req(input$selectall_2)
req(Level1_options())
if (input$selectall_2 == 0) {NULL} else {if (input$selectall_2 %% 2 == 0) {
updateCheckboxGroupInput(session, "Level1_options","Level1_options", choices = Level1_options(), selected = Level1_options())
} else {
updateCheckboxGroupInput(session, "Level1_options","Level1_options", choices = Level1_options(), selected = NULL)
}}
})
```
```{r}
# let's get the data all prepped
data_for_period <- reactive(data_going_forward() %>%
filter(is.na(`Category Level1`) | `Category Level1` != "INCOME") %>%
filter(data_source != "cash"))
period_of_timeframe <- reactive(as.numeric(input$review_timeframe))
timeframe_type <- reactive(as.numeric(input$timeframe_type))
max_date <- reactive(max(data_for_period()$Date))
min_date <- reactive(min(data_for_period()$Date))
dates_table_first <- reactive(generate_time_period_dates_table(period_of_timeframe(), timeframe_type(), max_date()))
dates_table <- reactive(
dates_table_first() %>%
select(-current_difference, -comparison_difference) %>%
deframe())
cumulative_spending_table <- reactive(
data_for_period() %>%
{if (input$Level3_options == "(All)") {.} else
{filter(., `Category Level3` == input$Level3_options)} } %>%
{if (length(input$Level2_options) == 0 | length(input$Level2_options) == length(Level2_options())) {.} else
{filter(., `Category Level2` %in% input$Level2_options)} } %>%
{if (length(input$Level1_options) == 0 | length(input$Level1_options) == length(Level1_options())) {.} else
{filter(., `Category Level1` %in% input$Level1_options)} } %>%
group_by(Date) %>%
summarise(total_expenses = -sum(Amount)) %>%
ungroup() %>%
right_join(tibble(Date = seq.Date(min_date(), max_date(), by = "day")), by = "Date") %>%
arrange(Date) %>%
mutate(total_expenses = if_else(is.na(total_expenses), 0, total_expenses),
analysis_period = case_when(Date >= dates_table()["current_start_date"] & Date <= dates_table()["current_end_date"] ~ "current",
Date >= dates_table()["comparison_start_date"] & Date <= dates_table()["comparison_end_date"] ~ "comparison",
TRUE ~ "Other"),
cumulative_expenses = cumsum(total_expenses),
lag_expenses = lag(cumulative_expenses, period_of_timeframe()),
dif_from_lag_expenses = cumulative_expenses - lag_expenses,
timeframe = period_of_timeframe(),
avg_daily_spend = dif_from_lag_expenses/timeframe,
avg_weekly_spend = avg_daily_spend*7)
)
```
Row {data-width=600}
------
### Expenses
```{r}
daily_actuals_plot <- reactive(
cumulative_spending_table() %>%
ggplot() +
aes(Date, total_expenses, fill = analysis_period, label = total_expenses, key = Date) +
geom_bar(stat = "identity") +
labs(x = NULL, y = NULL) +
theme(legend.position = "none")
# ggrepel::geom_text_repel() # format as $, only show occaisional ones
)
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
daily_actuals_plot() %>%
ggplotly(source = "daily_actuals_plot") %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
```
### Transactions
```{r}
daily_actuals_plot_value <- reactive(event_data("plotly_click", source = "daily_actuals_plot")["key"])
new_data_for_period <- reactive(
data_for_period() %>%
{if (input$Level3_options == "(All)") {.} else
{filter(., `Category Level3` == input$Level3_options)} } %>%
{if (length(input$Level2_options) == 0 | length(input$Level2_options) == length(Level2_options())) {.} else
{filter(., `Category Level2` %in% input$Level2_options)} } %>%
{if (length(input$Level1_options) == 0 | length(input$Level1_options) == length(Level1_options())) {.} else
{filter(., `Category Level1` %in% input$Level1_options)} } %>%
{if (length(daily_actuals_plot_value()) != 0)
{filter(., Date == daily_actuals_plot_value()[[1]])} else {.}} %>%
select(Date, Description, Amount) %>%
arrange(desc(abs(Amount))))
renderDataTable(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
datatable(new_data_for_period(),
rownames = F,
options =
list(
# dom = "t,
pageLength = 20, scrollY = "300px")) %>%
formatDate("Date", "toDateString") %>%
formatCurrency("Amount", digits = 0) %>%
formatStyle('Amount',
background = styleColorBar(new_data_for_period()$Amount, 'steelblue'),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center')}}
)
```
Row {data-width=400}
------
### Cumulative expenses
```{r}
data_for_cumulations <- reactive(
cumulative_spending_table() %>%
{if (input$review_timeframe == 0) {
mutate(., enough_dates_col = TRUE)
} else {
filter(., analysis_period != "Other") %>%
mutate(enough_dates_col = case_when(min_date() <= dates_table()["comparison_start_date"] ~ TRUE,
min_date() <= dates_table()["current_start_date"] ~ analysis_period == "current",
min_date() > dates_table()["current_start_date"] ~ FALSE))}} %>%
group_by(analysis_period) %>%
mutate(cumulative_expenses = cumsum(total_expenses)) %>%
ungroup()
)
only_period_start_points <- reactive(
data_for_cumulations() %>%
group_by(analysis_period) %>%
slice(1) %>%
ungroup() %>%
select(analysis_period, Date, cumulative_expenses, enough_dates_col) %>%
bind_rows(mutate(., cumulative_expenses = 0))
)
cumulative_expenses_plot <- reactive(
data_for_cumulations() %>%
ggplot() +
aes(Date, cumulative_expenses, col = analysis_period) +
{if (nrow(filter(data_for_cumulations(), enough_dates_col)) == 0) {NULL} else
{geom_line(data = . %>% filter(enough_dates_col), stat = "identity")}} +
{if (nrow(filter(data_for_cumulations(), enough_dates_col)) == 0) {NULL} else
{geom_line(data = filter(only_period_start_points(), enough_dates_col), stat = "identity")}} +
{if (nrow(filter(data_for_cumulations(), !enough_dates_col)) == 0) {NULL} else
{geom_line(data = filter(data_for_cumulations(), !enough_dates_col), stat = "identity", linetype = "dashed")}} +
{if (nrow(filter(data_for_cumulations(), !enough_dates_col)) == 0) {NULL} else
{geom_line(data = filter(only_period_start_points(), !enough_dates_col), stat = "identity", linetype = "dashed")}} +
geom_point(data = . %>% group_by(analysis_period) %>% filter(Date == max(Date)), stat = "identity") +
labs(x = NULL, y = NULL) +
theme(legend.position = "none"))
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
cumulative_expenses_plot() %>%
ggplotly() %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
```
```{r}
# data for value boxes
value_box_values <- reactive(data_for_cumulations() %>%
group_by(enough_dates_col, analysis_period) %>%
summarise(total_spend = sum(total_expenses),
avg_daily_spend = mean(total_expenses)) %>%
mutate(avg_weekly_spend = avg_daily_spend*7) %>%
gather(metric, value, -analysis_period, -enough_dates_col) %>%
mutate(value = scales::dollar(value, accuracy = 1),
value = if_else(enough_dates_col, value, paste0(value,"*"))) %>%
spread(metric, value)
)
```
### Current period (total spend)
```{r}
renderValueBox(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
valueBox(
value_box_values() %>%
{if (input$review_timeframe == 0) {.} else {filter(., analysis_period == "current")}} %>%
pull(total_spend)
, icon = "fa-pencil")
} )
```
### Comparison period (total spend)
```{r}
renderValueBox(
if (nrow(new_and_already_done_row_items()) == 0 | input$review_timeframe == 0) {NULL} else {
valueBox(
value_box_values() %>%
filter(analysis_period == "comparison") %>%
pull(total_spend)
, icon = "fa-pencil")
} )
```
### Avg expenditure
```{r}
rolling_avg_expenditure <- reactive(
data_for_cumulations() %>%
{if (input$review_timeframe == 0) {
mutate(., avg_daily_spend = sum(total_expenses) / n(),
avg_weekly_spend = avg_daily_spend*7)} else {.}} %>%
ggplot() +
aes_string("Date", input$avg_metric_selection, col = "analysis_period") +
geom_line(stat = "identity") +
geom_point(data = . %>% group_by(analysis_period) %>% filter(Date == max(Date)), stat = "identity") +
labs(x = NULL, y = NULL) +
theme(legend.position = "none")
)
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
rolling_avg_expenditure() %>%
ggplotly() %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
```
### Current Period (spend rate)
```{r}
renderValueBox(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
valueBox(
value_box_values() %>%
{if (input$review_timeframe == 0) {.} else {filter(., analysis_period == "current")}} %>%
pull(!! as.symbol(input$avg_metric_selection))
, caption = if (input$avg_metric_selection == "avg_weekly_spend") {"Current Period (Weekly spend rate)"} else {"Current Period (Daily spend rate)"}
, icon = "fa-pencil")
} )
```
### Comparison period (spend rate)
```{r}
renderValueBox(
if (nrow(new_and_already_done_row_items()) == 0 | input$review_timeframe == 0) {NULL} else {
valueBox(
value_box_values() %>%
filter(analysis_period == "comparison") %>%
pull(!! as.symbol(input$avg_metric_selection))
, caption = if (input$avg_metric_selection == "avg_weekly_spend") {"Comparison Period (Weekly spend rate)"} else {"Comparison Period (Daily spend rate)"}
, icon = "fa-pencil")
} )
```
Forecast
=====================================
SideBar {.sidebar}
---
```{r}
# start date
miniumum_forecast_value <- reactive(
if (nrow(new_and_already_done_row_items()) == 0)
{Sys.Date()} else
{max(data_going_forward()$Date) + 1}
)
renderUI(
dateInput("min_date_of_forecast",
label = "Forecast start:",
value = miniumum_forecast_value(),
min = miniumum_forecast_value(),
max = miniumum_forecast_value() + 300)
)
# months_into the future...
sliderInput("months_ahead",
"Forecast horizon:",
min = 1, max = 12,
post = " months",
value = 6,
step = 1)
level_options <- rev(c("Level 1" = "Category Level1",
"Level 2" = "Category Level2",
"Level 3" = "Category Level3"))
radioButtons("display_level_id",
"Display level:",
choices = level_options,
selected = level_options[1])
renderUI(
if (input$display_level_id != level_options[1]) {NULL} else {
# savings box
numericInput("savings_id", "Savings in the bank", 0)
})
Level3_options_2 <- reactive(
if (nrow(new_and_already_done_row_items()) == 0) {"(All)"} else {
c("(All)", sort(unique(forecast_table_for_saving()$`Category Level3`)))}
)
renderUI(
radioButtons("Level3_options_2",
"Level3_options",
choices = Level3_options_2(),
selected = input$Level3_options[1])
)
Level2_options_2 <- reactive(if (input$Level3_options_2 == "(All)") {
forecast_table_for_saving() %>%
pull(`Category Level2`) %>%
unique() %>%
sort()} else {
forecast_table_for_saving() %>%
filter(`Category Level3` == input$Level3_options_2) %>%
pull(`Category Level2`) %>%
unique() %>%
sort()
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
actionLink("selectall_A","Select All")
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
checkboxGroupInput("Level2_options_2",
"Level2_options",
choices = Level2_options_2(),
selected = Level2_options_2())
})
observe({
req(input$selectall_A)
req(Level2_options_2())
if (input$selectall_A == 0) {NULL} else {if (input$selectall_A %% 2 == 0) {
updateCheckboxGroupInput(session, "Level2_options_2","Level2_options", choices = Level2_options_2(), selected = Level2_options_2())
} else {
updateCheckboxGroupInput(session, "Level2_options_2","Level2_options", choices = Level2_options_2(), selected = NULL)
}}
})
Level1_options_2 <- reactive(if (input$Level3_options_2 == "(All)" & (length(input$Level2_options_2) == 0 | length(input$Level2_options_2) == length(Level2_options_2()))) {
forecast_table_for_saving() %>%
pull(`Category Level1`) %>%
unique() %>%
sort()} else {
forecast_table_for_saving() %>%
filter(`Category Level2` %in% input$Level2_options_2) %>%
pull(`Category Level1`) %>%
unique() %>%
sort()
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
actionLink("selectall_B","Select All")
})
renderUI(
if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
checkboxGroupInput("Level1_options_2",
"Level1_options",
choices = Level1_options_2(),
selected = Level1_options_2())
})
observe({
req(input$selectall_B)
req(Level1_options_2())
if (input$selectall_B == 0) {NULL} else {if (input$selectall_B %% 2 == 0) {
updateCheckboxGroupInput(session, "Level1_options_2","Level1_options", choices = Level1_options_2(), selected = Level1_options_2())
} else {
updateCheckboxGroupInput(session, "Level1_options_2","Level1_options", choices = Level1_options_2(), selected = NULL)
}}
})
```
```{r}
# let's prep the data
forecast_horison_days <- 370
rates <- reactive( generate_rates_table(new_and_already_done_row_items(), rates_import(), forecast_horison_days))
rates_for_saving <- reactive( regenerate_schedule_table(rates(), forecast_horison_days))
forecast_date_display_limit <- reactive(
as.Date(input$min_date_of_forecast + duration(input$months_ahead, "months"))
)
forecast_table_for_saving <- reactive(
create_forecast_values(data_going_forward(), rates(), forecast_horison_days) %>%
left_join(rates_for_saving() %>%
select(`Category Level1`, `Category Level2`, `Category Level3`) %>%
bind_rows(
tibble(`Category Level1` = c("UNCATEGORISED EXPENSE", "UNCATEGORISED INCOME"),
`Category Level2` = c("UNCATEGORISED EXPENSE", "UNCATEGORISED INCOME"),
`Category Level3` = c("EXPENSE", "INCOME"))) %>%
distinct(`Category Level1`, .keep_all = TRUE)
, by = "Category Level1") %>%
filter(Date >= miniumum_forecast_value())
)
```
Rest of the page {data-width=600}
---
### Chart A
```{r}
forecasted_expenses_plot_data <- reactive(
forecast_table_for_saving() %>%
filter(Date <= forecast_date_display_limit()) %>%
{if (input$Level3_options_2 == "(All)") {.} else
{filter(., `Category Level3` == input$Level3_options_2)} } %>%
{if (length(input$Level2_options_2) == 0 | length(input$Level2_options_2) == length(Level2_options_2())) {.} else
{filter(., `Category Level2` %in% input$Level2_options_2)} } %>%
{if (length(input$Level1_options_2) == 0 | length(input$Level1_options_2) == length(Level1_options_2())) {.} else
{filter(., `Category Level1` %in% input$Level1_options_2)} } %>%
group_by(Date, !! as.symbol(input$display_level_id)) %>%
summarise(total_expenses = sum(Amount, na.rm = T)) %>%
{if (input$display_level_id != "Category Level3") {.} else {
bind_rows(., group_by(., Date) %>%
summarise(total_expenses = sum(total_expenses)
) %>%
mutate(!! as.symbol(input$display_level_id) := "NET POSITION")
) }} %>%
mutate(total_expenses = if_else(!! as.symbol(input$display_level_id) == "NET POSITION",
total_expenses,
abs(total_expenses))) %>%
group_by(!! as.symbol(input$display_level_id)) %>%
mutate(cumulative_expenses = if_else(!! as.symbol(input$display_level_id) == "NET POSITION",
cumsum(total_expenses) + input$savings_id,
cumsum(total_expenses))) %>%
ungroup())
forecasted_expenses_plot <- reactive(
forecasted_expenses_plot_data() %>%
ggplot() +
aes(Date, cumulative_expenses, col = !! as.symbol(input$display_level_id), key = Date,
label = paste0(!! as.symbol(input$display_level_id), "\n", scales::dollar(cumulative_expenses, accuracy = 1))) +
geom_line(data = . %>% filter(!! as.symbol(input$display_level_id) != "NET POSITION"), stat = "identity") +
{if (nrow(filter(forecasted_expenses_plot_data(), !! as.symbol(input$display_level_id) == "NET POSITION")) == 0) {NULL} else
{geom_line(data = . %>% filter(!! as.symbol(input$display_level_id) == "NET POSITION"), stat = "identity", linetype = "dashed")}} +
{if (length(forecast_date_selection()) != 0)
{geom_vline(xintercept = as.numeric(as.Date(forecast_date_selection()[[1]])), linetype = "dashed")} else {NULL}} +
# add labels for these points
{if (length(forecast_date_selection()) != 0)
{geom_text(data = forecasted_expenses_plot_data() %>%
filter(Date == forecast_date_selection()[[1]]), nudge_x = 0.1
)} else {NULL}} +
labs(x = NULL, y = NULL)
)
renderPlotly(
{if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
forecasted_expenses_plot() %>%
ggplotly(source = "forecast_transactions_plot") %>%
config(displayModeBar = F) %>%
layout(xaxis=list(fixedrange=TRUE)) %>%
layout(yaxis=list(fixedrange=TRUE))
}})
forecast_date_selection <- reactive(event_data("plotly_click", source = "forecast_transactions_plot")["key"])
```
Row {data-width=400}
------
### Chart B
```{r}
# renderDataTable(
#
# {if (nrow(new_and_already_done_row_items()) == 0) {NULL} else {
#
# datatable(forecasted_expenses_plot_data()
# # some kind of grouping and summarising to go here
# , rownames = F
# , extensions="Buttons"
# , options =
# list(
# dom = 'Bfrtip',
# buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
# pageLength = 20, scrollY = "300px")) %>%
# formatDate("Date", "toDateString") %>%
# formatCurrency("cumulative_expenses", digits = 0)
# }})
```
### Chart C
```{r}
```
Instructions
=====================================
SideBar {.sidebar}
---
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment