Skip to content

Instantly share code, notes, and snippets.

@Taehun
Last active October 4, 2021 14:26
Show Gist options
  • Save Taehun/f0f5a0310fc312970b717f4ac8cb3756 to your computer and use it in GitHub Desktop.
Save Taehun/f0f5a0310fc312970b717f4ac8cb3756 to your computer and use it in GitHub Desktop.
BDD100K label to Darknet label
# source> https://github.com/yogeshgajjar/BDD100k-YOLOV3-tiny/blob/master/utils/label_to_txt.py
import argparse
import json
from pathlib import Path
LABEL_MAP = {
"car": 0,
"bus": 1,
"person": 2,
"bike": 3,
"truck": 4,
"motor": 5,
"train": 6,
"rider": 7,
"traffic sign": 8,
"traffic light": 9,
}
IMG_WIDTH = 1280
IMG_HEIGHT = 720
def box2d_to_yolo(box2d):
x1 = box2d["x1"] / IMG_WIDTH
x2 = box2d["x2"] / IMG_WIDTH
y1 = box2d["y1"] / IMG_HEIGHT
y2 = box2d["y2"] / IMG_HEIGHT
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
width = abs(x2 - x1)
height = abs(y2 - y1)
return cx, cy, width, height
def label2txt(frames, output_dir: Path):
"""
This function converts the labels into a .txt file with the same name as the image.
It extracts the bounding box, class info from the .json file and converts it into
the darknet format.
The darknet format is
<object id> <x> <y> <width> <height>
:params
frames : each image with labeled information in the .json file.
det_path : The path to output detection file.
"""
assert output_dir.is_dir(), "Output directory doesn't exist"
output_dir = output_dir.absolute()
for frame in frames:
img_name = Path(frame["name"])
assert img_name.suffix == ".jpg"
frame_name = str(img_name.stem)
frame_file = output_dir / (frame_name + ".txt")
# Creates, opens, and adds to a txt file with the name of each image.jpg
with open(frame_file, "w+") as f:
# For each sub label of each image, get the box2d variable
# Get the relative center point compared to the image size 1280/720
for label in frame["labels"]:
if "box2d" not in label:
continue
box2d = label["box2d"]
if box2d["x1"] >= box2d["x2"] or box2d["y1"] >= box2d["y2"]:
continue
cx, cy, width, height = box2d_to_yolo(box2d)
lbl = LABEL_MAP[label["category"]]
f.write("{} {} {} {} {}\n".format(lbl, cx, cy, width, height))
def convert_labels(label_path, output_dir):
"""
Intermediate method called to pass the argument in to the label2txt folder.
:params
label_path : The path where image labels are present. Basically the .json file
det_path : The path for the output detection file
"""
frames = json.load(open(label_path, "r"))
label2txt(frames, output_dir)
def main():
ap = argparse.ArgumentParser()
ap.add_argument("-l", "--label_path", help="path to the label file", required=True)
ap.add_argument("-d", "--det_path", help="path to output detection file", required=True)
args = ap.parse_args()
label_json = Path(args.label_path).absolute()
output_dir = Path(args.det_path).absolute()
assert label_json.is_file(), "Given argument is not a label.json file"
output_dir.mkdir(parents=True, exist_ok=True)
convert_labels(label_json, output_dir)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment