-
-
Save Tafkas/4742250 to your computer and use it in GitHub Desktop.
function computeSunrise(day, sunrise) { | |
/*Sunrise/Sunset Algorithm taken from | |
http://williams.best.vwh.net/sunrise_sunset_algorithm.htm | |
inputs: | |
day = day of the year | |
sunrise = true for sunrise, false for sunset | |
output: | |
time of sunrise/sunset in hours */ | |
//lat, lon for Berlin, Germany | |
var longitude = 13.408056; | |
var latitude = 52.518611; | |
var zenith = 90.83333333333333; | |
var D2R = Math.PI / 180; | |
var R2D = 180 / Math.PI; | |
// convert the longitude to hour value and calculate an approximate time | |
var lnHour = longitude / 15; | |
var t; | |
if (sunrise) { | |
t = day + ((6 - lnHour) / 24); | |
} else { | |
t = day + ((18 - lnHour) / 24); | |
}; | |
//calculate the Sun's mean anomaly | |
M = (0.9856 * t) - 3.289; | |
//calculate the Sun's true longitude | |
L = M + (1.916 * Math.sin(M * D2R)) + (0.020 * Math.sin(2 * M * D2R)) + 282.634; | |
if (L > 360) { | |
L = L - 360; | |
} else if (L < 0) { | |
L = L + 360; | |
}; | |
//calculate the Sun's right ascension | |
RA = R2D * Math.atan(0.91764 * Math.tan(L * D2R)); | |
if (RA > 360) { | |
RA = RA - 360; | |
} else if (RA < 0) { | |
RA = RA + 360; | |
}; | |
//right ascension value needs to be in the same qua | |
Lquadrant = (Math.floor(L / (90))) * 90; | |
RAquadrant = (Math.floor(RA / 90)) * 90; | |
RA = RA + (Lquadrant - RAquadrant); | |
//right ascension value needs to be converted into hours | |
RA = RA / 15; | |
//calculate the Sun's declination | |
sinDec = 0.39782 * Math.sin(L * D2R); | |
cosDec = Math.cos(Math.asin(sinDec)); | |
//calculate the Sun's local hour angle | |
cosH = (Math.cos(zenith * D2R) - (sinDec * Math.sin(latitude * D2R))) / (cosDec * Math.cos(latitude * D2R)); | |
var H; | |
if (sunrise) { | |
H = 360 - R2D * Math.acos(cosH) | |
} else { | |
H = R2D * Math.acos(cosH) | |
}; | |
H = H / 15; | |
//calculate local mean time of rising/setting | |
T = H + RA - (0.06571 * t) - 6.622; | |
//adjust back to UTC | |
UT = T - lnHour; | |
if (UT > 24) { | |
UT = UT - 24; | |
} else if (UT < 0) { | |
UT = UT + 24; | |
} | |
//convert UT value to local time zone of latitude/longitude | |
localT = UT + 1; | |
//convert to Milliseconds | |
return localT * 3600 * 1000; | |
} |
Hello,
Does anybody understand this line of the algorithm
//calculate local mean time of rising/setting
T = H + RA - (0.06571 * t) - 6.622;
For me the local mean time should only be a addition of the Sun's local hour and the right ascension. I don't get how the time of the year comes in consideration and where does this constant 6.622 comes from. I found that the 0.06571 is equal to 365.25/24 but it doesn't help me much for my understanding
@Tafkas Would you mind putting this code under an open source license? MIT would be handy for me.
Your source link for the algorithm is dead, but can still be found at https://web.archive.org/web/20161022214335/http://williams.best.vwh.net/sunrise_sunset_algorithm.htm or the original print: https://books.google.de/books?id=GbDC6AaH-kAC&hl=de&pg=SL2-PA5
Not entirely sure how much copyright from the book remains in your code.
BTW you might also wanna replicate that the algorithm was meant to be used in 1950-2000, and between 65°N and 65°S :)
If somebody wants to convert return values to date objects, like this:
new Date( computeSunrise() )
You need to do following:Remove these piece of code:
And replace return statement by this:
fixed results..
Thanks for sharing the code ;)