Skip to content

Instantly share code, notes, and snippets.

from pysat.formula import CNF, IDPool
from pysat.solvers import Solver
from pysat.card import CardEnc
from pysat.pb import PBEnc, EncType
from rich import print
from rich.text import Text
"""
Problem Definition:
-------------------
import pysat.card
from pysat.card import CardEnc
from pysat.formula import CNF, IDPool
from pysat.solvers import Solver
from pysat.pb import *
import networkx as nx
from networkx.algorithms.approximation import greedy_tsp
"""
This script demonstrates a potential use case of SAT solver interfaces, employing dynamic clause addition lazily during
from plumbum import local
from pysat.formula import CNF
from pysat.solvers import Solver
import os
import uuid
from pysat.card import CardEnc, EncType
from multiprocessing import Pool
"""
This script demonstrates a basic adaptation of parallel/distributed SAT solving.
from pysat.solvers import Solver
from pysat.formula import IDPool
import networkx as nx
import drup
"""
This script demonstrates basic SAT/UNSAT instance verification using SAT solvers.
We apply it to the graph coloring problem.
"""
import subprocess
import tempfile
import os
from itertools import combinations
import pysat.formula
from pysat.formula import IDPool
from pysat.solvers import Solver
"""
This script demonstrates the potential benefits of preprocessing techniques, such as (static) symmetry breaking, in SAT
from pysat.card import CardEnc, EncType
from pysat.formula import CNF
from pysat.solvers import Solver
import matplotlib.pyplot as plt
import numpy as np
def plot(queen_positions,n,gamma):
# Visualization
fig, ax = plt.subplots(figsize=(6, 6))
ax.set_xticks([])
from pysat.solvers import Solver
import matplotlib.pyplot as plt
import numpy as np
import math
from pysat.formula import *
"""
Log-Based SAT Encoding for the Queen Domination Problem
import matplotlib.pyplot as plt
from pysat.examples.rc2 import RC2
from pysat.formula import WCNF
from pysat.formula import IDPool
import networkx as nx
import numpy as np
G=np.array([[0,1,0,0,0,1],
[1,0,1,1,1,1],
[0,1,0,0,0,0],
import matplotlib.pyplot as plt
from pysat.examples.rc2 import RC2
from pysat.formula import WCNF
from pysat.formula import IDPool
import rustworkx.generators
from rustworkx.visualization import mpl_draw
G = rustworkx.generators.generalized_petersen_graph(12, 4)
vpool = IDPool(start_from=1)
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from pysat.examples.rc2 import RC2
from pysat.formula import WCNF
from pysat.formula import IDPool
G=np.array([[0,1,1,1,0,1,0],
[1,0,1,0,1,0,1],
[1,1,0,1,1,0,0],