Created
August 22, 2019 16:32
-
-
Save Tahsin-Mayeesha/41322df9d1d6a2042183d5872b84e0be to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--------------------------------------------------------------------------- | |
InvalidArgumentError Traceback (most recent call last) | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in get_attr(self, name) | |
2325 with c_api_util.tf_buffer() as buf: | |
-> 2326 c_api.TF_OperationGetAttrValueProto(self._c_op, name, buf) | |
2327 data = c_api.TF_GetBuffer(buf) | |
InvalidArgumentError: Operation 'StatefulPartitionedCall' has no attr named '_XlaCompile'. | |
During handling of the above exception, another exception occurred: | |
ValueError Traceback (most recent call last) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _MaybeCompile(scope, op, func, grad_fn) | |
343 try: | |
--> 344 xla_compile = op.get_attr("_XlaCompile") | |
345 xla_separate_compiled_gradients = op.get_attr( | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in get_attr(self, name) | |
2329 # Convert to ValueError for backwards compatibility. | |
-> 2330 raise ValueError(str(e)) | |
2331 x = attr_value_pb2.AttrValue() | |
ValueError: Operation 'StatefulPartitionedCall' has no attr named '_XlaCompile'. | |
During handling of the above exception, another exception occurred: | |
InvalidArgumentError Traceback (most recent call last) | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in get_attr(self, name) | |
2325 with c_api_util.tf_buffer() as buf: | |
-> 2326 c_api.TF_OperationGetAttrValueProto(self._c_op, name, buf) | |
2327 data = c_api.TF_GetBuffer(buf) | |
InvalidArgumentError: Operation 'lstm/StatefulPartitionedCall' has no attr named '_XlaCompile'. | |
During handling of the above exception, another exception occurred: | |
ValueError Traceback (most recent call last) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _MaybeCompile(scope, op, func, grad_fn) | |
343 try: | |
--> 344 xla_compile = op.get_attr("_XlaCompile") | |
345 xla_separate_compiled_gradients = op.get_attr( | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in get_attr(self, name) | |
2329 # Convert to ValueError for backwards compatibility. | |
-> 2330 raise ValueError(str(e)) | |
2331 x = attr_value_pb2.AttrValue() | |
ValueError: Operation 'lstm/StatefulPartitionedCall' has no attr named '_XlaCompile'. | |
During handling of the above exception, another exception occurred: | |
LookupError Traceback (most recent call last) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _GradientsHelper(ys, xs, grad_ys, name, colocate_gradients_with_ops, gate_gradients, aggregation_method, stop_gradients, unconnected_gradients, src_graph) | |
618 try: | |
--> 619 grad_fn = ops.get_gradient_function(op) | |
620 except LookupError: | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in get_gradient_function(op) | |
2461 op_type = op.type | |
-> 2462 return _gradient_registry.lookup(op_type) | |
2463 | |
~\Anaconda3\lib\site-packages\tensorflow\python\framework\registry.py in lookup(self, name) | |
96 raise LookupError( | |
---> 97 "%s registry has no entry for: %s" % (self._name, name)) | |
LookupError: gradient registry has no entry for: While | |
During handling of the above exception, another exception occurred: | |
LookupError Traceback (most recent call last) | |
<ipython-input-8-8f00f4e0d00d> in <module> | |
1 labels = [[0,0],[1,0]] | |
2 with tf.GradientTape() as tape: | |
----> 3 predictions = model(sentences) | |
4 print(predictions) | |
5 loss = loss_object(labels, predictions) | |
<ipython-input-3-74deeba11307> in __call__(self, sentences) | |
21 | |
22 #tokens,lookup_ids = self.language_module._tokens_to_lookup_ids(sentences) | |
---> 23 self.enc_out = self.language_module.return_encoder_output(sentences) | |
24 last_h = self.enc_out[:,-1,:] | |
25 max_pool_output = self.max_pool_layer(self.enc_out) | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds) | |
432 *args, **kwds) | |
433 # If we did not create any variables the trace we have is good enough. | |
--> 434 return self._concrete_stateful_fn._filtered_call(canon_args, canon_kwds) # pylint: disable=protected-access | |
435 | |
436 def fn_with_cond(*inner_args, **inner_kwds): | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _filtered_call(self, args, kwargs) | |
587 """ | |
588 return self._call_flat( | |
--> 589 (t for t in nest.flatten((args, kwargs), expand_composites=True) | |
590 if isinstance(t, (ops.Tensor, | |
591 resource_variable_ops.ResourceVariable)))) | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args) | |
663 tape.should_record(self._captured_inputs)): | |
664 if context.executing_eagerly(): | |
--> 665 return self._eager_backprop_call(args) | |
666 else: | |
667 return self._backprop_call_with_delayed_rewrite(args) | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _eager_backprop_call(self, args) | |
879 """ | |
880 if self._backward_graph_function is None: | |
--> 881 self._construct_backprop_function() | |
882 | |
883 ctx = context.context() | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _construct_backprop_function(self) | |
832 self._func_graph.inputs, | |
833 grad_ys=gradients_wrt_outputs, | |
--> 834 src_graph=self._func_graph) | |
835 | |
836 backwards_graph_captures = list(backwards_graph.captures.keys()) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _GradientsHelper(ys, xs, grad_ys, name, colocate_gradients_with_ops, gate_gradients, aggregation_method, stop_gradients, unconnected_gradients, src_graph) | |
675 # functions. | |
676 in_grads = _MaybeCompile(grad_scope, op, func_call, | |
--> 677 lambda: grad_fn(op, *out_grads)) | |
678 else: | |
679 # For function call ops, we add a 'SymbolicGradient' | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _MaybeCompile(scope, op, func, grad_fn) | |
347 xla_scope = op.get_attr("_XlaScope").decode() | |
348 except ValueError: | |
--> 349 return grad_fn() # Exit early | |
350 | |
351 if not xla_compile: | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in <lambda>() | |
675 # functions. | |
676 in_grads = _MaybeCompile(grad_scope, op, func_call, | |
--> 677 lambda: grad_fn(op, *out_grads)) | |
678 else: | |
679 # For function call ops, we add a 'SymbolicGradient' | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _registered_grad_fn(op, *doutputs) | |
691 @ops.RegisterGradient(self._gradient_name) | |
692 def _registered_grad_fn(op, *doutputs): # pylint: disable=unused-variable | |
--> 693 return self._grad_fn(op, *doutputs) | |
694 | |
695 def _grad_fn(self, op, *doutputs): | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _grad_fn(self, op, *doutputs) | |
696 """Gradients of this function.""" | |
697 if self._backward_graph_function is None: | |
--> 698 self._construct_backprop_function() | |
699 | |
700 # pylint: disable=protected-access | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _construct_backprop_function(self) | |
832 self._func_graph.inputs, | |
833 grad_ys=gradients_wrt_outputs, | |
--> 834 src_graph=self._func_graph) | |
835 | |
836 backwards_graph_captures = list(backwards_graph.captures.keys()) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _GradientsHelper(ys, xs, grad_ys, name, colocate_gradients_with_ops, gate_gradients, aggregation_method, stop_gradients, unconnected_gradients, src_graph) | |
675 # functions. | |
676 in_grads = _MaybeCompile(grad_scope, op, func_call, | |
--> 677 lambda: grad_fn(op, *out_grads)) | |
678 else: | |
679 # For function call ops, we add a 'SymbolicGradient' | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _MaybeCompile(scope, op, func, grad_fn) | |
347 xla_scope = op.get_attr("_XlaScope").decode() | |
348 except ValueError: | |
--> 349 return grad_fn() # Exit early | |
350 | |
351 if not xla_compile: | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in <lambda>() | |
675 # functions. | |
676 in_grads = _MaybeCompile(grad_scope, op, func_call, | |
--> 677 lambda: grad_fn(op, *out_grads)) | |
678 else: | |
679 # For function call ops, we add a 'SymbolicGradient' | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _registered_grad_fn(op, *doutputs) | |
691 @ops.RegisterGradient(self._gradient_name) | |
692 def _registered_grad_fn(op, *doutputs): # pylint: disable=unused-variable | |
--> 693 return self._grad_fn(op, *doutputs) | |
694 | |
695 def _grad_fn(self, op, *doutputs): | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _grad_fn(self, op, *doutputs) | |
696 """Gradients of this function.""" | |
697 if self._backward_graph_function is None: | |
--> 698 self._construct_backprop_function() | |
699 | |
700 # pylint: disable=protected-access | |
~\Anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _construct_backprop_function(self) | |
832 self._func_graph.inputs, | |
833 grad_ys=gradients_wrt_outputs, | |
--> 834 src_graph=self._func_graph) | |
835 | |
836 backwards_graph_captures = list(backwards_graph.captures.keys()) | |
~\Anaconda3\lib\site-packages\tensorflow\python\ops\gradients_util.py in _GradientsHelper(ys, xs, grad_ys, name, colocate_gradients_with_ops, gate_gradients, aggregation_method, stop_gradients, unconnected_gradients, src_graph) | |
633 raise LookupError( | |
634 "No gradient defined for operation '%s' (op type: %s)" % | |
--> 635 (op.name, op.type)) | |
636 if loop_state: | |
637 loop_state.EnterGradWhileContext(op, before=False) | |
LookupError: No gradient defined for operation 'while' (op type: While) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment