Last active
September 13, 2022 08:18
-
-
Save TakashiHarada/859422666aad37ddff4bfdb024cb2aa6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Data.List | |
data Var = Var Int deriving Eq | |
instance Show Var where | |
show (Var x) = "v" ++ show x | |
data Const = Zero | One deriving Eq | |
instance Show Const where | |
show Zero = "0" | |
show One = "1" | |
data Exp = | |
C Const | | |
V Var | | |
Not Exp | | |
And Exp Exp | | |
Or Exp Exp | | |
Xor Exp Exp deriving Eq | |
instance Show Exp where | |
show (C c) = show c | |
show (V v) = show v | |
show (Not f) = "(-" ++ show f ++ ")" | |
show (And f g) = show f ++ "・" ++ show g | |
show (Or f g) = "(" ++ show f ++ " + " ++ show g ++ ")" | |
show (Xor f g) = "(" ++ show f ++ " ⊕ " ++ show g ++ ")" | |
ps = map (V . Var) [0..] | |
t1 = (Not (ps !! 1)) `And` (Not (ps !! 2)) `And` (ps !! 4) | |
t2 = (ps !! 2) `And` (ps !! 3) `And` (Not (ps !! 4)) | |
t3 = (Not (ps !! 2)) `And` (Not (ps !! 3)) `And` (ps !! 4) | |
f = t1 `Or` t2 `Or` t3 | |
assign' :: Exp -> Var -> Const -> Exp | |
assign' (C c) _ _ = (C c) | |
assign' (V (Var x)) (Var y) c | |
| x /= y = V (Var x) | |
| otherwise = C c | |
assign' (Not e) v c = Not (assign' e v c) | |
assign' (And f g) v c = And (assign' f v c) (assign' g v c) | |
assign' (Or f g) v c = Or (assign' f v c) (assign' g v c) | |
assign' (Xor f g) v c = Xor (assign' f v c) (assign' g v c) | |
-- vars :: Exp -> [Var] | |
-- vars f = (nub . vars') f | |
-- where | |
-- vars' (C c) = [] | |
-- vars' (V (Var x)) = [Var x] | |
-- vars' (Not e) = vars' e | |
-- vars' (And f g) = vars' f ++ vars' g | |
-- vars' (Or f g) = vars' f ++ vars' g | |
-- vars' (Xor f g) = vars' f ++ vars' g | |
prm' :: Exp -> Var -> Exp | |
prm' (C c) _ = C c | |
prm' f v = f0 `Xor` ((V v) `And` (f0 `Xor` f1)) | |
where | |
f0 = assign' f v Zero | |
f1 = assign' f v One | |
-- Positive Reed-Muller Expansion | |
-- [Var] means an ordering of variables | |
prm :: Exp -> [Var] -> Exp | |
prm f [] = f | |
prm (C c) _ = C c | |
prm f (v:vs) = (prm f0 vs) `Xor` ((V v) `And` (prm f2 vs)) | |
where | |
f0 = assign' f v Zero | |
f1 = assign' f v One | |
f2 = f0 `Xor` f1 | |
-- prm f (map Var [3,2,1,4]) | |
reduce :: Exp -> Exp | |
reduce (C c) = C c | |
reduce (V v) = V v | |
reduce (Not f) | |
| f' == C Zero = C One | |
| f' == C One = C Zero | |
| otherwise = Not f' | |
where f' = reduce f | |
reduce (Or (C Zero) (C Zero)) = C Zero | |
reduce (Or (C x) (C y)) = C One | |
reduce (Or f g) | |
| f' == C Zero = g' | |
| g' == C Zero = f' | |
| f' == C One || g' == C One = C One | |
| otherwise = Or f' g' | |
where | |
f' = reduce f | |
g' = reduce g | |
reduce (And (C One) (C One)) = C One | |
reduce (And (C x) (C y)) = C Zero | |
reduce (And f g) | |
| f' == C Zero = C Zero | |
| g' == C Zero = C Zero | |
| f' == C One = g' | |
| g' == C One = f' | |
| otherwise = And f' g' | |
where | |
f' = reduce f | |
g' = reduce g | |
reduce (Xor (C Zero) (C Zero)) = C Zero | |
reduce (Xor (C One) (C One)) = C Zero | |
reduce (Xor (C x) (C y)) = C One | |
reduce (Xor f g) | |
| f' == C Zero = g' | |
| g' == C Zero = f' | |
| f' == C One = reduce (Not g) | |
| g' == C One = reduce (Not f) | |
| otherwise = Xor f' g' | |
where | |
f' = reduce f | |
g' = reduce g | |
-- reduce $ prm f [Var 3, Var 2, Var 1, Var 4] | |
eval :: Exp -> [Var] -> [Const] -> Exp | |
eval f [] _ = f | |
eval f _ [] = f | |
eval f (v:vs) (c:cs) = eval (assign' f v c) vs cs | |
f' = prm f [Var 3, Var 2, Var 1, Var 4] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment